Phys211C5 p1 Applications of Newton’s Laws of Motion Equilibrium: no net force 1.Draw a simple diagram 2.Draw a free body diagram for one body 3.Identify.

Slides:



Advertisements
Similar presentations
Chapter 3: Force and Motion
Advertisements

Applying Newton’s Laws
Applying Newton’s Laws
Chapter 5 – Force and Motion I
Physics 111: Mechanics Lecture 5
Forces and Newton’s Laws of Motion
Force Scenario Solutions
Forces and Newton’s Laws of Motion Chapter 4. All objects naturally tend to continue moving in the same direction at the same speed. All objects resist.
Dr. Steve Peterson Physics 1025F Mechanics NEWTON’S LAWS Dr. Steve Peterson
Applications of Newton’s Laws
APC -Unit 2. 2 nd Law A 72kg person stands on a scale which sits on a floor of elevator. It starts to move from rest upward with speed v(t) = 3t +
Review Chap. 5 Applying Newton’s laws
Chapter 4 Forces and Mass.
Ballistic Cart Demo Discuss law of cosines for planeinwindb problem Other HW problems?
Laws of Motion Review.
AP Physics Chapter 6 Force and Motion – II.
Forces and The Laws of Motion
Newton’s Laws of Motion
Applying Newton’s Laws
Force Chapter 6. Force Any push or pull exerted on an object.
Forces Ch. 6 Milbank High School. Sec 6.1 Force and Motion ► Objectives  Define a force and differentiate between contact forces and long-range forces.
Forces.
Chapter 5 More Applications of Newton’s Laws. Forces of Friction When an object is in motion on a surface or through a viscous medium, there will be a.
Chapter 6: Circular Motion and Gravitation
Dynamics II Motion in a Plane
Newton’s Laws of Motion
AP Physics I.B Newton’s Laws of Motion. B.1 An interaction between two bodies resulting in a push or a pull is a force. Forces are of two types: contact.
AIM: What are Newton’s three laws, and how do they describe how an object behaves? Do Now: - Draw a Free Body Diagram for the block below if 1. it is at.
More Applications of Newton’s Laws
Forces of Friction When an object is in motion on a surface or through a viscous medium, there will be a resistance to the motion This is due to the interactions.
 Extension of Circular Motion & Newton’s Laws Chapter 6 Mrs. Warren Kings High School.
Forces and Free-Body Diagrams
Phys 250 Ch4 p1 Force and Motion Some History: The Copernican Revolution with Copernicus, Galileo, Kepler... Newton’s Principia: laws of motion physics.
This property of all matter to continue in its present state of motion (straight line, constant speed) is called inertia. What determines how much inertia.
Physics 1D03 - Lecture 71 Newton’s Laws (II) Free-body diagrams Normal Force Friction.
Chapter 5 Dynamics of Uniform Circular Motion. 5.1 Uniform Circular Motion DEFINITION OF UNIFORM CIRCULAR MOTION Uniform circular motion is the motion.
AP Physics C I.B Newton’s Laws of Motion. The “natural state” of an object.
Forces. Force – a push or a pull Contact – a force acting on a body by touching it Long-range – force exerted on a body w/o contact (gravity, magnetic.
Copyright © 2009 Pearson Education, Inc. Chapter 5 Using Newton’s Laws: Friction, Circular Motion, Drag Forces.
Applications & Examples of Newton’s Laws. Forces are VECTORS!! Newton’s 2 nd Law: ∑F = ma ∑F = VECTOR SUM of all forces on mass m  Need VECTOR addition.
Chapter 5 THE LAWS OF MOTION. Force, net force : Force as that which causes an object to accelerate. The net force acting on an object is defined as.
Copyright © 2012 Pearson Education Inc. PowerPoint ® Lectures for University Physics, Thirteenth Edition – Hugh D. Young and Roger A. Freedman Lectures.
Unit 2 1D Vectors & Newton’s Laws of Motion. A. Vectors and Scalars.
Section 4–4: Everyday Forces Coach Kelsoe Physics Pages 135–143.
AP Physics C I.B Newton’s Laws of Motion. Note: the net force is the sum of the forces acting on an object, as well as ma.
Newton’s 1 st Law of Motion. Newton’s 1 st Law Newton’s 1 st Law: An object at rest stays at rest and an object in motion stays in motion, unless acted.
1 7/1/04 Midterm 1: July 9 Will cover material from Chapters 1-6 Go to the room where you usually have recitation July 6 Recitation will be a review session.
Force Chapter 6. Force Any push or pull exerted on an object.
Ch. 5: Using Newton’s Laws: Friction, Circular Motion, Drag Forces
Newton’s 1 st Law of Motion. Newton’s 1 st Law Newton’s 1 st Law: An object at _______stays at _______and an object in motion stays in motion, unless.
Forces and the Laws of Motion Chapter 4. Forces and the Laws of Motion 4.1 Changes in Motion –Forces are pushes or pullss can cause acceleration. are.
Lesson 4.4 Everyday Forces Essential Question: What are some of the everyday forces?
5.5 Non-uniform circular motion 5.6 Drag Velocity
FORCES Chapter 5. Mechanics The study of Motion Isaac Newton, 1600’s The father of mechanics.
Forces and Motion Chapter 5 and 6. Focus  Force: a push or a pull  Acts on objects to change its velocity.
Physics Chapter 4 Forces and the Laws of Motion. §A force is defined as a push or pull exerted on an object. §Forces can cause objects to speed up, slow.
Forces. What is a Force? A force is a push or pull acting on an object that changes the motion of the object.
Physics and Forces Dynamics Newton’s Laws of Motion  Newton's laws are only valid in inertial reference frames:  This excludes rotating and accelerating.
Physics 218 Lecture 8: Dynamics Alexei Safonov.
Newton’s Laws.
The Laws of Motion. Classical Mechanics Describes the relationship between the motion of objects in our everyday world and the forces acting on them Describes.
Chapter 6 Force and Motion II. Forces of Friction When an object is in motion on a surface or through a viscous medium, there will be a resistance to.
Applications of Newton’s Laws of Motion
Q5.1 A car engine is suspended from a chain linked at O to two other chains. Which of the following forces should be included in the free-body diagram.
Objectives Chapter 4 Section 4 Everyday Forces
Chapter 4 Newton’s Laws.
Forces and Newton’s Laws of Motion
Forces and Newton’s Laws of Motion
Force Problems.
Presentation transcript:

Phys211C5 p1 Applications of Newton’s Laws of Motion Equilibrium: no net force 1.Draw a simple diagram 2.Draw a free body diagram for one body 3.Identify interactions (force magnitudes and directions on that body) 4.Choose coordinates and determine the components of each force 5.Set algebraic sum of all x-components to zero to obtain an algebraic relation. In a separate equation set all the y-components equal to zero. 6.Repeat 2-5 for any other bodies in the problem. 7.Use all the simultaneous equations from the step(s) 5 to solve for the unknowns.

Phys211C5 p2 A 500 N gymnast begins climbing a 100 N rope. what is the tension at the bottom of the rope? what is the tension in the top of the rope?

Phys211C5 p3 A car engine of weight w is suspended from a chain linked to two other chains as shown. One chain is fastened to the ceiling and makes a 60° angle with respect to the ceiling. The other is horizontal and attached to the wall. What is the tension in the chains in terms of the weight of the engine? 60 o

Phys211C5 p4 A car of weight w rests on a ramp and is held in place by a cable, once the car’s brakes and transmission are released. If the ramp is at an angle of  with respect to the horizontal, determine the tension in the cable in terms of the car’s weight. 

Phys211C5 p5 Tension over a frictionless pulley: A weight w 1 slides on a frictionless 15 o slope. A cable attached to the weight is also attached over a pulley to a counterweight w 2 chosen to just counter balance w 1, so that the entire system moves at constant velocity. Determine w 2 in terms of w o w2w2 w1w1

Phys211C5 p6 Dynamics: 1.Draw a simple diagram 2.Draw a free body diagram for one body 3.Identify interactions (force magnitudes and directions on that body) 4.Choose coordinates and determine the components of each force 5.Set algebraic sum of all x-components to ma x to obtain an algebraic relation. In a separate equation set all the y-components equal to ma y. 6.Repeat 2-5 for any other bodies in the problem. 7.Use all the simultaneous equations from the step(s) 5 to solve for the unknowns.

Phys211C5 p7 An iceboat (mass including rider is 200 kg) is initially at rest on a horizontal frictionless surface. What force must be applied to the boat to accelerate it to a speed of 6.00 m/s in 4.00 s? An iceboat (mass including rider is 200 kg) is initially at rest on a horizontal surface. What force must be applied to the boat to accelerate it to a speed of 6.00 m/s in 4.00 s if the opposing frictional force has a constant magnitude of 100 N?

Phys211C5 p8 An elevator and its load have a total mass of 800 kg. The elevator is originally moving downward at 10.0 m/s. The elevator is brought to rest over a distance of 25.0 m. What is the tension in the supporting cable? A 50.0 kg woman stands on a scale while riding in the elevator in the previous example. What is the reading on the scale while the elevator is coming to a stop? What is the reading once the elevator is at rest?

Phys211C5 p9 A sled rides down a frictionless surface which makes an angle  with respect to the horizontal. What is the acceleration of the sled? A 4.0 kg cart riding on a horizontal frictionless track is attached to a.500 kg rope. If a 9.00 N force is applied to the other end of the rope, determine the acceleration of the rope and cart and the tension in both ends of the rope.

Phys211C5 p10 m2m2 m1m1 A mass m 1 slides on a frictionless horizontal surface. A mass less cable attached to m 1 is also attached over a pulley to a counterweight m 2. Determine the acceleration of the masses and the tension in the cable.

Phys211C5 p11 A simple accelerometer is made by suspending a weight by a string from the center of a level protractor. Given the mass m of the suspended object and the angle  that the string makes with respect to the vertical, determine the acceleration a. 

Phys211C5 p12 Friction opposes motion due to surfaces sticking together Kinetic Friction: surfaces are moving relative to each other a.k.a. Sliding Friction Static Friction: surfaces are not moving relative to each other. Static Friction prevents stationary objects from moving until sufficient force has been applied. Rolling Friction, etc Force of friction Applied Force

Phys211C5 p13 Coefficient of Friction Frictional forces depend upon how hard the surfaces are being pressed together -> force perpendicular to the surface = normal force (F N ) the types of surfaces that are in contact -> coefficient of friction Materialstatic:  s kinetic:  k wood on wood wood on stone steel on steel (smooth) rubber tire on dry concrete rubber tire on wet concrete steel on Teflon see also table 5-1

Phys211C5 p14 A 500 N crate is dragged by a rope across a horizontal surface. To start it moving takes 230 N of horizontal force. Once moving, it takes 200 N to keep it moving at constant speed. What are the coefficients of friction? What is the friction force if the crate is at rest and a horizontal force of 50 N is applied to it? What is the force necessary keep the crate moving at constant velocity if the rope is pulled at an angle of 30 o above the horizontal?

Phys211C5 p15 A chute is being built along which crates are to be slid down at constant speed. The coefficient of kinetic friction is  k. What angle should the chute make with respect to the horizontal? What is the acceleration of a moving crate if the angle is actually greater than this critical angle? 

Phys211C5 p16 Fluid resistance: force on a body moving through a fluid (gas/liquid) always opposes motion low speeds: force is proportional to speed f  v f = k v : k depends upon fluid, geometric size/shape of body high speeds: force is proportional to speed 2 f  v 2 f = D v 2 : D depends upon fluid, geometric size/shape of body terminal velocity:

Phys211C5 p17 Dynamics of Circular Motion recall now apply F rad = m a rad A.300 kg mass revolves uniformly on a frictionless horizontal surface. The mass is attached to a.140 m cord tied to a pin at the center of the circle. What is the tension in the string if the mass makes 2.00 revolutions per second?

Phys211C5 p18 A conical pendulum consists of a mass m suspended from a fixed length L of string. The mass swings in a horizontal circle so that the string always makes an angle  with respect to the vertical. How are the speed and the period related to the parameters specified above? 

Phys211C5 p19 phys A circular curve of radius R is to have a flat roadbed. The coefficient of static friction between the tires and the road is  s. What is the maximum speed v max, the car can go around the corner without slipping?

Phys211C5 p20 phys A circular curve of radius R is to have a banked roadbed so that for a speed v, the car will not need any force of friction to make the curve. Relate the angle of bank to the speed of the car and radius of the curve.

Phys211C5 p21 Motion in a Vertical Circle mass on a string minimum speed speed increasing maximum speed speed decreasing r h = 2r At the top: At the bottom: Critical speed: speed at top at which string goes slack (T=0) + applications to amusement park physics

Phys211C5 p22 Fundamental Forces Gravitation (interaction between masses) Electromagnetism (interaction between charges) unified force: electrostatics + magnetism + … for interacting protons, 35 orders of magnitude stronger than gravity Strong Interaction (aka the Strong Nuclear force) short range Weak Interaction (aka the Weak Nuclear force) further successful unification: Electroweak theory Strong + Electroweak = Grand Unified Theory (GUT) all four unified = Theory of Everything (TOE)