Hypothesis Testing. Intro to Hypothesis Testing Make a conjecture and test its validity Null hypothesis, H o : Make a conjecture about a population statistic.

Slides:



Advertisements
Similar presentations
CHAPTER 21 Inferential Statistical Analysis. Understanding probability The idea of probability is central to inferential statistics. It means the chance.
Advertisements

Chapter 12 Tests of Hypotheses Means 12.1 Tests of Hypotheses 12.2 Significance of Tests 12.3 Tests concerning Means 12.4 Tests concerning Means(unknown.
Copyright © 2014 by McGraw-Hill Higher Education. All rights reserved.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Chapter 9 Hypothesis Testing Developing Null and Alternative Hypotheses Developing Null and.
Chapter Seventeen HYPOTHESIS TESTING
Fundamentals of Hypothesis Testing. Identify the Population Assume the population mean TV sets is 3. (Null Hypothesis) REJECT Compute the Sample Mean.
1/55 EF 507 QUANTITATIVE METHODS FOR ECONOMICS AND FINANCE FALL 2008 Chapter 10 Hypothesis Testing.
Probability & Statistics for Engineers & Scientists, by Walpole, Myers, Myers & Ye ~ Chapter 10 Notes Class notes for ISE 201 San Jose State University.
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 8-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter.
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc. Chap 9-1 Chapter 9 Fundamentals of Hypothesis Testing: One-Sample Tests Basic Business Statistics.
Chapter 3 Hypothesis Testing. Curriculum Object Specified the problem based the form of hypothesis Student can arrange for hypothesis step Analyze a problem.
Inference about a Mean Part II
Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall Statistics for Business and Economics 7 th Edition Chapter 9 Hypothesis Testing: Single.
Aaker, Kumar, Day Seventh Edition Instructor’s Presentation Slides
Ch. 9 Fundamental of Hypothesis Testing
Chapter 8 Introduction to Hypothesis Testing
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 8-1 TUTORIAL 6 Chapter 10 Hypothesis Testing.
Chapter 9 Hypothesis Testing II. Chapter Outline  Introduction  Hypothesis Testing with Sample Means (Large Samples)  Hypothesis Testing with Sample.
© 1999 Prentice-Hall, Inc. Chap Chapter Topics Hypothesis Testing Methodology Z Test for the Mean (  Known) p-Value Approach to Hypothesis Testing.
Statistics for Managers Using Microsoft® Excel 5th Edition
Chapter 9 Hypothesis Testing II. Chapter Outline  Introduction  Hypothesis Testing with Sample Means (Large Samples)  Hypothesis Testing with Sample.
Inferential Statistics
AM Recitation 2/10/11.
Aaker, Kumar, Day Ninth Edition Instructor’s Presentation Slides
Overview of Statistical Hypothesis Testing: The z-Test
Testing Hypotheses I Lesson 9. Descriptive vs. Inferential Statistics n Descriptive l quantitative descriptions of characteristics n Inferential Statistics.
Chapter 13 – 1 Chapter 12: Testing Hypotheses Overview Research and null hypotheses One and two-tailed tests Errors Testing the difference between two.
Chapter 10 Hypothesis Testing
Overview Definition Hypothesis
Confidence Intervals and Hypothesis Testing - II
Presented by Mohammad Adil Khan
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 9-1 Chapter 9 Fundamentals of Hypothesis Testing: One-Sample Tests Business Statistics,
Fundamentals of Hypothesis Testing: One-Sample Tests
Chapter 8 Hypothesis Testing. Section 8-1: Steps in Hypothesis Testing – Traditional Method Learning targets – IWBAT understand the definitions used in.
Copyright © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins Chapter 17 Inferential Statistics.
Hypothesis Testing: One Sample Cases. Outline: – The logic of hypothesis testing – The Five-Step Model – Hypothesis testing for single sample means (z.
Chapter 9 Hypothesis Testing II: two samples Test of significance for sample means (large samples) The difference between “statistical significance” and.
Chapter 10 Hypothesis Testing
1 Introduction to Hypothesis Testing. 2 What is a Hypothesis? A hypothesis is a claim A hypothesis is a claim (assumption) about a population parameter:
Lecture 7 Introduction to Hypothesis Testing. Lecture Goals After completing this lecture, you should be able to: Formulate null and alternative hypotheses.
Introduction to Hypothesis Testing: One Population Value Chapter 8 Handout.
Testing of Hypothesis Fundamentals of Hypothesis.
1 Psych 5500/6500 The t Test for a Single Group Mean (Part 1): Two-tail Tests & Confidence Intervals Fall, 2008.
Introduction to Statistics for the Social Sciences SBS200, COMM200, GEOG200, PA200, POL200, or SOC200 Lecture Section 001, Spring 2015 Room 150 Harvill.
1 Chapter 9 Hypothesis Testing. 2 Chapter Outline  Developing Null and Alternative Hypothesis  Type I and Type II Errors  Population Mean: Known 
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 8-1 Chapter 8 Fundamentals of Hypothesis Testing: One-Sample Tests Statistics.
Chap 8-1 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. A Course In Business Statistics 4 th Edition Chapter 8 Introduction to Hypothesis.
Lecture 9 Chap 9-1 Chapter 2b Fundamentals of Hypothesis Testing: One-Sample Tests.
Economics 173 Business Statistics Lecture 4 Fall, 2001 Professor J. Petry
1 Chapter 8 Introduction to Hypothesis Testing. 2 Name of the game… Hypothesis testing Statistical method that uses sample data to evaluate a hypothesis.
Unit 8 Section 8-1 & : Steps in Hypothesis Testing- Traditional Method  Hypothesis Testing – a decision making process for evaluating a claim.
Psych 230 Psychological Measurement and Statistics
Chap 8-1 Fundamentals of Hypothesis Testing: One-Sample Tests.
Chapter 9: Testing Hypotheses Overview Research and null hypotheses One and two-tailed tests Type I and II Errors Testing the difference between two means.
© Copyright McGraw-Hill 2004
Formulating the Hypothesis null hypothesis 4 The null hypothesis is a statement about the population value that will be tested. null hypothesis 4 The null.
Introduction to Hypothesis Testing
What is a Hypothesis? A hypothesis is a claim (assumption) about the population parameter Examples of parameters are population mean or proportion The.
Statistical Inference Statistical inference is concerned with the use of sample data to make inferences about unknown population parameters. For example,
Course Overview Collecting Data Exploring Data Probability Intro. Inference Comparing Variables Relationships between Variables Means/Variances Proportions.
ENGR 610 Applied Statistics Fall Week 7 Marshall University CITE Jack Smith.
Aims: To understand the difference between a one-tail and two tail test. To be able to formulate a null and alternative hypothesis. To be able to carry.
Chapter 12 Tests of Hypotheses Means 12.1 Tests of Hypotheses 12.2 Significance of Tests 12.3 Tests concerning Means 12.4 Tests concerning Means(unknown.
6.2 Large Sample Significance Tests for a Mean “The reason students have trouble understanding hypothesis testing may be that they are trying to think.”
Hypothesis Testing and Statistical Significance
Copyright © 2013 Pearson Education, Inc. Publishing as Prentice Hall Statistics for Business and Economics 8 th Edition Chapter 9 Hypothesis Testing: Single.
Statistical Inference for the Mean Objectives: (Chapter 8&9, DeCoursey) -To understand the terms variance and standard error of a sample mean, Null Hypothesis,
Learning Objectives Describe the hypothesis testing process Distinguish the types of hypotheses Explain hypothesis testing errors Solve hypothesis testing.
Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall Statistics for Business and Economics 7 th Edition Chapter 9 Hypothesis Testing: Single.
Hypothesis Testing I The One-sample Case
Presentation transcript:

Hypothesis Testing

Intro to Hypothesis Testing Make a conjecture and test its validity Null hypothesis, H o : Make a conjecture about a population statistic Alternative hypothesis, H a : Accepted when the null hypothesis is rejected A test statistic is computed from sample data and tested to see if it falls in the rejection region

Testing Errors We would like for the test to work properly, i.e. if the conjecture is true the test indicates so, and if it is false, the test indicates that Type I Error: This is rejecting the null hypothesis when it is in fact true Type II Error: This is when the null hypothesis is not rejected when it is actually false

Graphical Interpretation

Possible Test Outcomes

Example 4.5 EXAMPLE OF TESTING ERRORS ASSUME: 1. Population of 10,000 people. 2. Test for flu virus that has 95% confidence level test negative for flu test positive. Then: 1. Type I error: people who test positive for flu but do not have it: 800 × 0.05 = Type II error: people who have flu but test negative for it are: 9200 × 0.05 = 460. Thus = 460/10,000 = or 4.6% = 500 people incorrectly test for flu. Or 5% of the population.

Type I and Type II Errors We can fix the probability of the Type I error: it is α Generally, we can not determine the probability of the type II error The probability of the type II error decreases with increasing sample size or with increasing probability of the type I error

Outcomes of Hypothesis Test Reject the null hypothesis Do not reject the null hypothesis Caution – not rejecting the null hypothesis does not necessarily mean that the alternative hypothesis is true

Guilty vs Not Guilty In the US, a person charged with a crime is assumed innocent until proven guilty. The null hypothesis is person=innocent. It is our custom (based on the Constitution) to use a small α (low probability of type I error) which makes it unlikely that an innocent person will be wrongly convicted. The trade-off is that the probability of the type II error increases and many guilty people will go free.

Types of Tests – One-Tail ONE-TAIL TEST: Equivalent to checking if test statistic is only greater or less than critical value. Only concerned with one tail of distribution. That is, either greater or less than critical value. Typical null hypothesis, H o : Statistic1 = Statistic2 Typical alternative hypothesis, H a : Statistic1 > Statistic2 or Statistic1 < Statistic2

Types of Tests – Two-Tail TWO-TAIL TEST: Equivalent to confidence interval. Either test statistic in region or outside of region. Typical null hypothesis, H o : Statistic1 = Statistic2 Typical alternative hypothesis, H a : Statistic1 ≠ Statistic2

Test Concerning Population Mean One-tail test is used to see if a population mean is greater than (or less than) a conjectured value The null hypothesis in a one-tail test is stated as an equality, but it makes more sense (in Bon’s opinion) to make it an inequality The two-tail test is used to see if a population mean is different from a conjectured value

Hypothesis Test for Mean One-tailed testTwo-tailed test Test Statistic Rejection Region Null hypothesis Alternative hyp.

←not appropriate

Better Interpretation The question is whether the EDM is properly calibrated or not. The baseline of calibrated length m, is considered a fact. This hypothesis can be made before going to the calibration range. H o : μ= H a : μ≠ >2.093, therefore reject null hypothesis

Hypothesis Test for Variance One-tailed testTwo-tailed test Test Statistic Rejection Region Null hypothesis Alternative hyp.

Example 4.7 The owner of a surveying firm wants all surveying technicians to be able to read a particular theodolite to within ±1.5". To test this value, the owner asks a senior field crew chief to perform a reading test with the instrument. The crew chief reads the plates 30 times, and obtains S=0.9”. Does this support the 1.5“ limit at a 5% significance level? (use one-tail test) H o : σ 2 ≤ (1.5”) 2 H a : σ 2 > (1.5”) <42.56 so don’t reject null

Example revised The owner of a surveying firm wants all surveying technicians to be able to read a particular theodolite to within ±1.5". To test this value, the owner asks a senior field crew chief to perform a reading test with the instrument. The crew chief reads the plates 30 times, and obtains S=0.9”. Does this support the 1.5“ limit at a 5% significance level? (use one-tail test) H o : σ 2 ≥ (1.5”) 2 H a : σ 2 < (1.5”) <17.71 so reject null This is a much more definitive statement.

Comments on Example “This example illustrates an important point to be made when using statistics. The interpretation of statistical testing requires judgment by the person performing the test. It should always be remembered that with a test, the objective is to reject and not accept an hypothesis.” Wolf and Ghilani, p. 75

Hypothesis Test for Variance Ratio One-tailed testTwo-tailed test Test Statistic Rejection Region Null hypothesis Alternative hyp.

Example 4.8 Minimally constrained trilateration network with 24 degrees of freedom has a reference variance, S o 2 = With full control constraint, S o 2 = Are the two reference variances different at a 0.05 level of significance? 4.59>2.21, therefore reject null hypothesis (reference variances are different)

Example 4.9 Ron and Kathi are comparing precision (i.e. variance). With 50 degrees of freedom each, Kathi’s variance is 0.81 and Ron’s variance is Is Kathi’s precision better at a 0.01 level of significance? One-tail test 1.49 is not > 1.95 so Kathi is not better How about at 0.1 level of significance? 1.49 > 1.44 so Kathi is better

Example Extended It is possible to determine the level of α at the point of rejection through trial and error using STATS (not with tables). Keep entering different values of α until the F value is That’s why a 0.01 level does not indicate Kathi is better (nor 0.05), but at a 0.10 level the test shows she is better.