Inventory Control Chapter 17 2.

Slides:



Advertisements
Similar presentations
Inventory Control.
Advertisements

What is Inventory? Definition--The stock of any item or resource used in an organization Raw materials Finished products Component parts Supplies Work.
Inventory Management for Independent Demand Chapter 12, Part 2.
INVENTORY Based on slides for Chase Acquilano and Jacobs, Operations Management, McGraw-Hill.
Introduction to Management Science
Chapter 17 Inventory Control 2.
DOM 511 Inventory Control 2.
12 Inventory Management.
1 Chapter 15 Inventory Control  Inventory System Defined  Inventory Costs  Independent vs. Dependent Demand  Basic Fixed-Order Quantity Models  Basic.
Chapter 17 Inventory Control.
Inventory Management Chapter 16.
Chapter 12 Inventory Management
Chapter 13 Inventory Systems for Independent Demand
Operations Management
Inventory Management A Presentation by R.K.Agarwal, Manager (Finance), PFC.
Operations Management
Chapter 13 Inventory Management
Chapter 13 Inventory Management McGraw-Hill/Irwin
INVENTORY MANAGEMENT Chapter Twenty McGraw-Hill/Irwin
20–1. 20–2 Chapter Twenty Copyright © 2014 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin.
Inventory models Nur Aini Masruroh. Outline  Introduction  Deterministic model  Probabilistic model.
Supply Chain Management (SCM) Inventory management
Operations Management
Chapter 9 Inventory Management.
FOOD PURCHASING & INVENTORY ISQA 458/558 MELLIE PULLMAN 1.
Operations Management
Operations Management Inventory Management Chapter 12 - Part 2
Class 22: Chapter 14: Inventory Planning Independent Demand Case Agenda for Class 22 –Hand Out and explain Diary 2 Packet –Discuss revised course schedule.
11 Inventory Management CHAPTER
Chapter 14 Inventory Control
Copyright 2006 John Wiley & Sons, Inc. Beni Asllani University of Tennessee at Chattanooga Inventory Management Operations Management Chapter 13 Roberta.
© 2000 by Prentice-Hall Inc Russell/Taylor Oper Mgt 3/e Chapter 12 Inventory Management.
F O U R T H E D I T I O N Inventory Systems for Independent Demand © The McGraw-Hill Companies, Inc., 2003 chapter 16 DAVIS AQUILANO CHASE PowerPoint Presentation.
McGraw-Hill/Irwin © 2006 The McGraw-Hill Companies, Inc., All Rights Reserved. 1.
1 Operations Management Inventory Management. 2 The Functions of Inventory To have a stock of goods that will provide a “selection” for customers To take.
Chapter 12 – Independent Demand Inventory Management
CHAPTER 7 Managing Inventories
13 Inventory Management.
PRODUCTION AND OPERATIONS MANAGEMENT
Inventory Stock of items or resources used in an organization.
McGraw-Hill/Irwin Copyright © 2009 by The McGraw-Hill Companies, Inc. All rights reserved.
CHAPTER 12 Inventory Control.
1-1 1 McGraw-Hill/Irwin ©2009 The McGraw-Hill Companies, All Rights Reserved.
Inventory Management.
1 Slides used in class may be different from slides in student pack Chapter 17 Inventory Control  Inventory System Defined  Inventory Costs  Independent.
Copyright 2011 John Wiley & Sons, Inc. Chapter 9 Inventory Management 9-1.
Inventory Management MD707 Operations Management Professor Joy Field.
Independent Demand Inventory Planning CHAPTER FOURTEEN McGraw-Hill/Irwin Copyright © 2011 by the McGraw-Hill Companies, Inc. All rights reserved.
Inventory Management. Learning Objectives  Define the term inventory and list the major reasons for holding inventories; and list the main requirements.
1 Chapter 6 –Inventory Management Policies Operations Management by R. Dan Reid & Nada R. Sanders 4th Edition © Wiley 2010.
1 1 Slide Inventory Management Professor Ahmadi. 2 2 Slide The Functions of Inventory n To ”decouple” or separate various parts of the production process.
1 Inventory Control Operations Management For Competitive Advantage, 10 th edition C HASE, J ACOBS & A QUILANO Tenth edition Chapter 14.
© The McGraw-Hill Companies, Inc., Chapter 14 Inventory Control.
MBA 8452 Systems and Operations Management
Operations Research II Course,, September Part 3: Inventory Models Operations Research II Dr. Aref Rashad.
© The McGraw-Hill Companies, Inc., Inventory Control.
To Accompany Russell and Taylor, Operations Management, 4th Edition,  2003 Prentice-Hall, Inc. All rights reserved. Chapter 12 Inventory Management.
Inventory Management for Independent Demand Chapter 12.
Operations Fall 2015 Bruce Duggan Providence University College.
Chapter 17 Inventory Control
Inventory Control. Meaning Of Inventory Control Inventory control is a system devise and adopted for controlling investment in inventory. It involve inventory.
Week 14 September 7, 2005 Learning Objectives:
1 © 2006 The McGraw-Hill Companies, Inc., All Rights Reserved Chapter 15 Inventory Control.
McGraw-Hill/Irwin Copyright © 2007 by The McGraw-Hill Companies, Inc. All rights reserved. 12 Inventory Management.
CHAPTER 8 Inventory Management © Pearson Education, Inc. publishing as Prentice Hall.
12-1 Operations Management Inventory Management Chapter 12 - Part I.
PENGENDALIAN PERSEDIAAN (Bagian 2)
Chapter 15 Inventory Systems for Independent Demand
INVENTORY Inventory is the stock of any item or resource used in an organization and can include: raw materials, finished products, component parts, supplies-in-transit.
Chapter 17 Inventory Control.
Presentation transcript:

Inventory Control Chapter 17 2

Inventory System Inventory is the stock of any item or resource used in an organization and can include: raw materials, finished products, component parts, supplies, and work-in-process An inventory system is the set of policies and controls that monitor levels of inventory and determines what levels should be maintained, when stock should be replenished, and how large orders should be 3

Purposes of Inventory 1. To maintain independence of operations 2. To meet variation in product demand 3. To allow flexibility in production scheduling 4. To provide a safeguard for variation in raw material delivery time 5. To take advantage of economic purchase-order size 4

Inventory Costs Holding (or carrying) costs Costs for storage, handling, insurance, etc Setup (or production change) costs Costs for arranging specific equipment setups, etc Ordering costs Costs of someone placing an order, etc 5

Independent vs. Dependent Demand Independent Demand (Demand for the final end-product or demand not related to other items) Finished product Dependent Demand (Derived demand items for component parts, subassemblies, raw materials, etc) E(1) Component parts 6

Inventory Systems Single-Period Inventory Model One time purchasing decision (Example: vendor selling t-shirts at a football game) Seeks to balance the costs of inventory overstock and under stock Multi-Period Inventory Models Fixed-Order Quantity Models Event triggered (Example: running out of stock) Fixed-Time Period Models Time triggered (Example: Monthly sales call by sales representative) 7

Multi-Period Models: Fixed-Order Quantity Model Model Assumptions (Part 1) Demand for the product is constant and uniform throughout the period Lead time (time from ordering to receipt) is constant Price per unit of product is constant

Inventory holding cost is based on average inventory Multi-Period Models: Fixed-Order Quantity Model Model Assumptions (Part 2) Inventory holding cost is based on average inventory Ordering or setup costs are constant All demands for the product will be satisfied (No back orders are allowed) 9

Basic Fixed-Order Quantity Model and Reorder Point Behavior 4. The cycle then repeats. 1. You receive an order quantity Q. R = Reorder point Q = Economic order quantity L = Lead time L Q R Time Number of units on hand 2. Your start using them up over time. 3. When you reach down to a level of inventory of R, you place your next Q sized order.

Cost Minimization Goal By adding the item, holding, and ordering costs together, we determine the total cost curve, which in turn is used to find the Qopt inventory order point that minimizes total costs Total Cost C O S T Holding Costs QOPT Annual Cost of Items (DC) Ordering Costs Order Quantity (Q) 11

Basic Fixed-Order Quantity (EOQ) Model Formula TC=Total annual cost D =Demand C =Cost per unit Q =Order quantity S =Cost of placing an order or setup cost R =Reorder point L =Lead time H=Annual holding and storage cost per unit of inventory Total Annual = Cost Annual Ordering Cost Annual Holding Cost + 12

Deriving the EOQ Using calculus, we take the first derivative of the total cost function with respect to Q, and set the derivative (slope) equal to zero, solving for the optimized (cost minimized) value of Qopt We also need a reorder point to tell us when to place an order 13

EOQ Example (1) Problem Data Given the information below, what are the EOQ and reorder point? Annual Demand = 1,000 units Days per year considered in average daily demand = 365 Cost to place an order = $10 Holding cost per unit per year = $2.50 Lead time = 7 days Cost per unit = $15 14

EOQ Example (1) Solution In summary, you place an optimal order of 90 units. In the course of using the units to meet demand, when you only have 20 units left, place the next order of 90 units. 15

EOQ Example (2) Problem Data Determine the economic order quantity and the reorder point given the following… Annual Demand = 10,000 units Days per year considered in average daily demand = 365 Cost to place an order = $10 Holding cost per unit per year = 10% of cost per unit Lead time = 10 days Cost per unit = $15 16

EOQ Example (2) Solution Place an order for 366 units. When in the course of using the inventory you are left with only 274 units, place the next order of 366 units. 17

Fixed-Quantity Model with random Lead time Demand Answer how much & when to order Allow demand to vary Follows normal distribution Other EOQ assumptions apply Consider service level & safety stock Service level = 1 - Probability of stockout Higher service level means more safety stock More safety stock means higher ROP 18

Probabilistic ROP When to Order? Reorder Point (ROP) Optimal Order Quantity X Safety Stock (SS) Time Inventory Level Lead Time SS ROP Service Level P(Stockout) Place order Receive order Frequency 32

Reorder Point Example ROP = Average demand during lead time + Safety stock SS = z * stdev of lead time demand (LTD normally distributed) For 95% service level, z = 1.65 A company experiences mean demand during lead time of 350 and std. dev. of LTD of 10 ROP = 350 + 1.65*10 = 366.5 or 367 units

Fixed-Time Period Model Answers how much to order Orders placed at fixed intervals Inventory brought up to target amount Amount ordered varies No continuous inventory count Possibility of stockout between intervals Useful when vendors visit routinely Example: P&G representative calls every 2 weeks

Inventory Level in a Fixed Period System Various amounts (Qi) are ordered at regular time intervals (p) based on the quantity necessary to bring inventory up to target maximum Target maximum Q1 Q2 Q4 Q3 On-Hand Inventory p p p Time