Binary Search Trees Comp 550.

Slides:



Advertisements
Similar presentations
Comp 122, Spring 2004 Binary Search Trees. btrees - 2 Comp 122, Spring 2004 Binary Trees  Recursive definition 1.An empty tree is a binary tree 2.A node.
Advertisements

Jan Binary Search Trees What is a search binary tree? Inorder search of a binary search tree Find Min & Max Predecessor and successor BST insertion.
Analysis of Algorithms CS 477/677 Binary Search Trees Instructor: George Bebis (Appendix B5.2, Chapter 12)
Binary Search Trees Many of the slides are from Prof. Plaisted’s resources at University of North Carolina at Chapel Hill.
Introduction to Algorithms Jiafen Liu Sept
CS 332: Algorithms Binary Search Trees. Review: Dynamic Sets ● Next few lectures will focus on data structures rather than straight algorithms ● In particular,
ALGORITHMS THIRD YEAR BANHA UNIVERSITY FACULTY OF COMPUTERS AND INFORMATIC Lecture six Dr. Hamdy M. Mousa.
The complexity and correctness of algorithms (with binary trees as an example)
UNC Chapel Hill Lin/Foskey/Manocha Binary Search Tree Her bir node u bir object olan bir linked data structure ile temsil edilebilir. Her bir node key,
Chapter 12 Binary search trees Lee, Hsiu-Hui Ack: This presentation is based on the lecture slides from Hsu, Lih-Hsing, as well as various materials from.
David Luebke 1 5/4/2015 Binary Search Trees. David Luebke 2 5/4/2015 Dynamic Sets ● Want a data structure for dynamic sets ■ Elements have a key and satellite.
CS Section 600 CS Section 002 Dr. Angela Guercio Spring 2010.
Analysis of Algorithms CS 477/677 Instructor: Monica Nicolescu Lecture 10.
1 Brief review of the material so far Recursive procedures, recursive data structures –Pseudocode for algorithms Example: algorithm(s) to compute a n Example:
Analysis of Algorithms CS 477/677 Instructor: Monica Nicolescu Lecture 12.
Binary Search Trees CIS 606 Spring Search trees Data structures that support many dynamic-set operations. – Can be used as both a dictionary and.
Analysis of Algorithms CS 477/677 Instructor: Monica Nicolescu Lecture 11.
Sorting. How fast can we sort? All the sorting algorithms we have seen so far are comparison sorts: only use comparisons to determine the relative order.
Universal Hashing When attempting to foil an malicious adversary, randomize the algorithm Universal hashing: pick a hash function randomly when the algorithm.
1.1 Data Structure and Algorithm Lecture 12 Binary Search Trees Topics Reference: Introduction to Algorithm by Cormen Chapter 13: Binary Search Trees.
Data Structures, Spring 2006 © L. Joskowicz 1 Data Structures – LECTURE Binary search trees Motivation Operations on binary search trees: –Search –Minimum,
CS 307 Fundamentals of Computer Science 1 Data Structures Review Session 2 Ramakrishna, PhD student. Grading Assistant for this course.
David Luebke 1 7/2/2015 ITCS 6114 Binary Search Trees.
Analysis of Algorithms CS 477/677 Instructor: Monica Nicolescu.
David Luebke 1 7/2/2015 Medians and Order Statistics Structures for Dynamic Sets.
DAST 2005 Tirgul 7 Binary Search Trees. DAST 2005 Motivation We would like to have a dynamic ADT that efficiently supports the following common operations:
12.Binary Search Trees Hsu, Lih-Hsing. Computer Theory Lab. Chapter 12P What is a binary search tree? Binary-search property: Let x be a node in.
Design & Analysis of Algorithms Unit 2 ADVANCED DATA STRUCTURE.
David Luebke 1 9/18/2015 CS 332: Algorithms Red-Black Trees.
Chapter 12. Binary Search Trees. Search Trees Data structures that support many dynamic-set operations. Can be used both as a dictionary and as a priority.
CS 3343: Analysis of Algorithms Lecture 16: Binary search trees & red- black trees.
2IL50 Data Structures Fall 2015 Lecture 7: Binary Search Trees.
Binary SearchTrees [CLRS] – Chap 12. What is a binary tree ? A binary tree is a linked data structure in which each node is an object that contains following.
Binary Search Tree Qamar Abbas.
October 3, Algorithms and Data Structures Lecture VII Simonas Šaltenis Nykredit Center for Database Research Aalborg University
Preview  Graph  Tree Binary Tree Binary Search Tree Binary Search Tree Property Binary Search Tree functions  In-order walk  Pre-order walk  Post-order.
Lecture 9 Algorithm Analysis Arne Kutzner Hanyang University / Seoul Korea.
October 9, Algorithms and Data Structures Lecture VIII Simonas Šaltenis Aalborg University
1 Algorithms CSCI 235, Fall 2015 Lecture 22 Binary Search Trees.
Red-Black Trees. Review: Binary Search Trees ● Binary Search Trees (BSTs) are an important data structure for dynamic sets ● In addition to satellite.
Lecture 19. Binary Search Tree 1. Recap Tree is a non linear data structure to present data in hierarchical form. It is also called acyclic data structure.
Fundamentals of Algorithms MCS - 2 Lecture # 17. Binary Search Trees.
Lecture 91 Data Structures, Algorithms & Complexity Insertion and Deletion in BST GRIFFITH COLLEGE DUBLIN.
Mudasser Naseer 1 1/25/2016 CS 332: Algorithms Lecture # 10 Medians and Order Statistics Structures for Dynamic Sets.
Analysis of Algorithms CS 477/677 Red-Black Trees Instructor: George Bebis (Chapter 14)
CSE 2331/5331 Topic 8: Binary Search Tree Data structure Operations.
CS6045: Advanced Algorithms Data Structures. Dynamic Sets Next few lectures will focus on data structures rather than straight algorithms In particular,
Binary Search Trees What is a binary search tree?
Binary Search Trees.
CS 332: Algorithms Red-Black Trees David Luebke /20/2018.
Data Structures Review Session 2
CS200: Algorithms Analysis
Lecture 7 Algorithm Analysis
Ch. 12: Binary Search Trees Ming-Te Chi
ძებნის ორობითი ხეები BST (Binary Search Trees)
ძებნის ორობითი ხეები BST (Binary Search Trees)
Ch. 12: Binary Search Trees Ming-Te Chi
Binary Search Trees (13.1/12.1)
Lecture 7 Algorithm Analysis
Algorithms and Data Structures Lecture VII
Chapter 12: Binary Search Trees
CS6045: Advanced Algorithms
Lecture 7 Algorithm Analysis
Topic 6: Binary Search Tree Data structure Operations
Design and Analysis of Algorithms
Analysis of Algorithms CS 477/677
Binary Search Trees Comp 122, Spring 2004.
Chapter 12&13: Binary Search Trees (BSTs)
Red-Black Trees CS302 Data Structures
Presentation transcript:

Binary Search Trees Comp 550

Binary Trees Recursive definition Is this a binary tree? An empty tree is a binary tree A node with two child subtrees is a binary tree Only what you get from 1 by a finite number of applications of 2 is a binary tree. Is this a binary tree? 56 26 200 18 28 190 213 12 24 27 Comp 550

Binary Search Trees View today as data structures that can support dynamic set operations. Search, Minimum, Maximum, Predecessor, Successor, Insert, and Delete. Can be used to build Dictionaries. Priority Queues. Basic operations take time proportional to the height of the tree – O(h). Comp 550

BST – Representation Represented by a linked data structure of nodes. root(T) points to the root of tree T. Each node contains fields: key left – pointer to left child: root of left subtree. right – pointer to right child : root of right subtree. p – pointer to parent. p[root[T]] = NIL (optional). Comp 550

Binary Search Tree Property Stored keys must satisfy the binary search tree property.  y in left subtree of x, then key[y]  key[x].  y in right subtree of x, then key[y]  key[x]. 56 26 200 18 28 190 213 12 24 27 Comp 550

Inorder Traversal How long does the walk take? The binary-search-tree property allows the keys of a binary search tree to be printed, in (monotonically increasing) order, recursively. Inorder-Tree-Walk (x) 1. if x  NIL 2. then Inorder-Tree-Walk(left[p]) 3. print key[x] 4. Inorder-Tree-Walk(right[p]) 56 26 200 18 28 190 213 12 24 27 How long does the walk take? Can you prove its correctness? Comp 550

Correctness of Inorder-Walk Must prove that it prints all elements, in order, and that it terminates. By induction on size of tree. Size=0: Easy. Size >1: Prints left subtree in order by induction. Prints root, which comes after all elements in left subtree (still in order). Prints right subtree in order (all elements come after root, so still in order). Comp 550

Querying a Binary Search Tree All dynamic-set search operations can be supported in O(h) time. h = (lg n) for a balanced binary tree (and for an average tree built by adding nodes in random order.) h = (n) for an unbalanced tree that resembles a linear chain of n nodes in the worst case. Comp 550

Tree Search Tree-Search(x, k) 1. if x = NIL or k = key[x] 2. then return x 3. if k < key[x] 4. then return Tree-Search(left[x], k) 5. else return Tree-Search(right[x], k) 56 26 200 18 28 190 213 12 24 27 Running time: O(h) Aside: tail-recursion Comp 550

Iterative Tree Search Iterative-Tree-Search(x, k) 1. while x  NIL and k  key[x] 2. do if k < key[x] 3. then x  left[x] 4. else x  right[x] 5. return x 56 26 200 18 28 190 213 12 24 27 The iterative tree search is more efficient on most computers. The recursive tree search is more straightforward. Comp 550

Finding Min & Max The binary-search-tree property guarantees that: The minimum is located at the left-most node. The maximum is located at the right-most node. Tree-Minimum(x) Tree-Maximum(x) 1. while left[x]  NIL 1. while right[x]  NIL 2. do x  left[x] 2. do x  right[x] 3. return x 3. return x Q: How long do they take? Comp 550

Predecessor and Successor Successor of node x is the node y such that key[y] is the smallest key greater than key[x]. The successor of the largest key is NIL. Search consists of two cases. If node x has a non-empty right subtree, then x’s successor is the minimum in the right subtree of x. If node x has an empty right subtree, then: As long as we move to the left up the tree (move up through right children), we are visiting smaller keys. x’s successor y is the node that x is the predecessor of (x is the maximum in y’s left subtree). In other words, x’s successor y, is the lowest ancestor of x whose left child is also an ancestor of x. Comp 550

Pseudo-code for Successor Tree-Successor(x) if right[x]  NIL 2. then return Tree-Minimum(right[x]) 3. y  p[x] 4. while y  NIL and x = right[y] 5. do x  y 6. y  p[y] 7. return y 56 26 200 18 28 190 213 12 24 27 Code for predecessor is symmetric. Running time: O(h) Comp 550

BST Insertion – Pseudocode Tree-Insert(T, z) y  NIL x  root[T] while x  NIL do y  x if key[z] < key[x] then x  left[x] else x  right[x] p[z]  y if y = NIL then root[t]  z else if key[z] < key[y] then left[y]  z else right[y]  z Change the dynamic set represented by a BST. Ensure the binary-search-tree property holds after change. Insertion is easier than deletion. 56 26 200 18 28 190 213 12 24 27 Comp 550

Analysis of Insertion Initialization: O(1) Tree-Insert(T, z) y  NIL x  root[T] while x  NIL do y  x if key[z] < key[x] then x  left[x] else x  right[x] p[z]  y if y = NIL then root[t]  z else if key[z] < key[y] then left[y]  z else right[y]  z Initialization: O(1) While loop in lines 3-7 searches for place to insert z, maintaining parent y. This takes O(h) time. Lines 8-13 insert the value: O(1)  TOTAL: O(h) time to insert a node. Comp 550

Exercise: Sorting Using BSTs Sort (A) for i  1 to n do tree-insert(A[i]) inorder-tree-walk(root) What are the worst case and best case running times? In practice, how would this compare to other sorting algorithms? Comp 550

Tree-Delete (T, x) if x has no children  case 0 then remove x if x has one child  case 1 then make p[x] point to child if x has two children (subtrees)  case 2 then swap x with its successor perform case 0 or case 1 to delete it  TOTAL: O(h) time to delete a node Comp 550

Deletion – Pseudocode Tree-Delete(T, z) /* Determine which node to splice out: either z or z’s successor. */ if left[z] = NIL or right[z] then y  z else y  Tree-Successor[z] /* Set x to a non-NIL child of x, or to NIL if y has no children. */ if left[y]  NIL then x  left[y] else x  right[y] /* y is removed from the tree by manipulating pointers of p[y] and x */ if x  NIL then p[x]  p[y] /* Continued on next slide */ Comp 550

Deletion – Pseudocode Tree-Delete(T, z) (Contd. from previous slide) if p[y] = NIL then root[T]  x else if y  left[p[i]] then left[p[y]]  x else right[p[y]]  x /* If z’s successor was spliced out, copy its data into z */ if y  z then key[z]  key[y] copy y’s satellite data into z. return y Comp 550

Correctness of Tree-Delete How do we know case 2 should go to case 0 or case 1 instead of back to case 2? Because when x has 2 children, its successor is the minimum in its right subtree, and that successor has no left child (hence 0 or 1 child). Equivalently, we could swap with predecessor instead of successor. It might be good to alternate to avoid creating lopsided tree. Comp 550

Binary Search Trees View today as data structures that can support dynamic set operations. Search, Minimum, Maximum, Predecessor, Successor, Insert, and Delete. Can be used to build Dictionaries. Priority Queues. Basic operations take time proportional to the height of the tree – O(h). Comp 550