Introduction to Hypothesis Testing Chapter 8. Applying what we know: inferential statistics z-scores + probability distribution of sample means HYPOTHESIS.

Slides:



Advertisements
Similar presentations
Introduction to Hypothesis Testing
Advertisements

Statistics Hypothesis Testing.
Anthony Greene1 Simple Hypothesis Testing Detecting Statistical Differences In The Simplest Case:  and  are both known I The Logic of Hypothesis Testing:
Statistics.  Statistically significant– When the P-value falls below the alpha level, we say that the tests is “statistically significant” at the alpha.
Hypothesis Testing An introduction. Big picture Use a random sample to learn something about a larger population.
Chapter 12 Tests of Hypotheses Means 12.1 Tests of Hypotheses 12.2 Significance of Tests 12.3 Tests concerning Means 12.4 Tests concerning Means(unknown.
Inference Sampling distributions Hypothesis testing.
COURSE: JUST 3900 INTRODUCTORY STATISTICS FOR CRIMINAL JUSTICE Instructor: Dr. John J. Kerbs, Associate Professor Joint Ph.D. in Social Work and Sociology.
Statistical Techniques I EXST7005 Lets go Power and Types of Errors.
Hypothesis testing Week 10 Lecture 2.
Using Statistics in Research Psych 231: Research Methods in Psychology.
Fundamentals of Hypothesis Testing. Identify the Population Assume the population mean TV sets is 3. (Null Hypothesis) REJECT Compute the Sample Mean.
Evaluating Hypotheses Chapter 9. Descriptive vs. Inferential Statistics n Descriptive l quantitative descriptions of characteristics.
Lecture 2: Thu, Jan 16 Hypothesis Testing – Introduction (Ch 11)
Evaluating Hypotheses Chapter 9 Homework: 1-9. Descriptive vs. Inferential Statistics n Descriptive l quantitative descriptions of characteristics ~
Hypothesis Testing For  With  Known. HYPOTHESIS TESTING Basic idea: You want to see whether or not your data supports a statement about a parameter.
Introduction to Hypothesis Testing CJ 526 Statistical Analysis in Criminal Justice.
Statistics for the Social Sciences Psychology 340 Fall 2006 Hypothesis testing.
Understanding Statistics in Research
Statistics for the Social Sciences Psychology 340 Spring 2005 Hypothesis testing.
Statistics for the Social Sciences Psychology 340 Fall 2006 Hypothesis testing.
Introduction to Hypothesis Testing CJ 526 Statistical Analysis in Criminal Justice.
PY 427 Statistics 1Fall 2006 Kin Ching Kong, Ph.D Lecture 6 Chicago School of Professional Psychology.
PSY 307 – Statistics for the Behavioral Sciences
Using Statistics in Research Psych 231: Research Methods in Psychology.
Chapter 9: Introduction to the t statistic
Copyright © 2005 Brooks/Cole, a division of Thomson Learning, Inc Chapter 11 Introduction to Hypothesis Testing.
Introduction to Testing a Hypothesis Testing a treatment Descriptive statistics cannot determine if differences are due to chance. A sampling error occurs.
Chapter Ten Introduction to Hypothesis Testing. Copyright © Houghton Mifflin Company. All rights reserved.Chapter New Statistical Notation The.
Statistics for the Social Sciences
Chapter 8 Introduction to Hypothesis Testing. Hypothesis Testing Hypothesis testing is a statistical procedure Allows researchers to use sample data to.
Overview of Statistical Hypothesis Testing: The z-Test
Testing Hypotheses I Lesson 9. Descriptive vs. Inferential Statistics n Descriptive l quantitative descriptions of characteristics n Inferential Statistics.
Overview Definition Hypothesis
© 2008 McGraw-Hill Higher Education The Statistical Imagination Chapter 9. Hypothesis Testing I: The Six Steps of Statistical Inference.
Hypothesis testing is used to make decisions concerning the value of a parameter.
Copyright © 2005 Brooks/Cole, a division of Thomson Learning, Inc Chapter 9 Introduction to Hypothesis Testing.
Introduction to Hypothesis Testing for μ Research Problem: Infant Touch Intervention Designed to increase child growth/weight Weight at age 2: Known population:
Tuesday, September 10, 2013 Introduction to hypothesis testing.
Chapter 8 Introduction to Hypothesis Testing
Example 10.1 Experimenting with a New Pizza Style at the Pepperoni Pizza Restaurant Concepts in Hypothesis Testing.
Hypothesis Testing: One Sample Cases. Outline: – The logic of hypothesis testing – The Five-Step Model – Hypothesis testing for single sample means (z.
The Argument for Using Statistics Weighing the Evidence Statistical Inference: An Overview Applying Statistical Inference: An Example Going Beyond Testing.
Chapter 4 Introduction to Hypothesis Testing Introduction to Hypothesis Testing.
Chapter 8 Introduction to Hypothesis Testing
Introduction to Hypothesis Testing: One Population Value Chapter 8 Handout.
Making decisions about distributions: Introduction to the Null Hypothesis 47:269: Research Methods I Dr. Leonard April 14, 2010.
Psy B07 Chapter 4Slide 1 SAMPLING DISTRIBUTIONS AND HYPOTHESIS TESTING.
Chapter 20 Testing hypotheses about proportions
1 Chapter 10: Introduction to Inference. 2 Inference Inference is the statistical process by which we use information collected from a sample to infer.
Economics 173 Business Statistics Lecture 4 Fall, 2001 Professor J. Petry
1 Chapter 8 Introduction to Hypothesis Testing. 2 Name of the game… Hypothesis testing Statistical method that uses sample data to evaluate a hypothesis.
Chapter 20 Testing Hypothesis about proportions
Statistical Inference An introduction. Big picture Use a random sample to learn something about a larger population.
Lecture 17 Dustin Lueker.  A way of statistically testing a hypothesis by comparing the data to values predicted by the hypothesis ◦ Data that fall far.
Introduction Suppose that a pharmaceutical company is concerned that the mean potency  of an antibiotic meet the minimum government potency standards.
Hypothesis Testing. Outline of Today’s Discussion 1.Logic of Hypothesis Testing 2.Evaluating Hypotheses Please refrain from typing, surfing or printing.
Hypothesis Testing Introduction to Statistics Chapter 8 Feb 24-26, 2009 Classes #12-13.
Introduction to Testing a Hypothesis Testing a treatment Descriptive statistics cannot determine if differences are due to chance. Sampling error means.
Psych 230 Psychological Measurement and Statistics Pedro Wolf October 21, 2009.
Chapter 8: Introduction to Hypothesis Testing. Hypothesis Testing A hypothesis test is a statistical method that uses sample data to evaluate a hypothesis.
Chapter 12 Tests of Hypotheses Means 12.1 Tests of Hypotheses 12.2 Significance of Tests 12.3 Tests concerning Means 12.4 Tests concerning Means(unknown.
Slide 20-1 Copyright © 2004 Pearson Education, Inc.
Module 10 Hypothesis Tests for One Population Mean
Chapter Nine Part 1 (Sections 9.1 & 9.2) Hypothesis Testing
Psych 231: Research Methods in Psychology
Psych 231: Research Methods in Psychology
Testing Hypotheses I Lesson 9.
1 Chapter 8: Introduction to Hypothesis Testing. 2 Hypothesis Testing The general goal of a hypothesis test is to rule out chance (sampling error) as.
Type I and Type II Errors
Presentation transcript:

Introduction to Hypothesis Testing Chapter 8

Applying what we know: inferential statistics z-scores + probability distribution of sample means HYPOTHESIS TESTING! HYPOTHESIS TESTING!

Some Familiar Concepts… Sampling error: There is always some diff. btwn. samples and populations, even when sample is untreated (control) Sampling error: There is always some diff. btwn. samples and populations, even when sample is untreated (control) M ≠μ just by chance. M ≠μ just by chance. So… how can we tell if a difference we observe is due to: So… how can we tell if a difference we observe is due to: –chance (random sampling error or fluctuation) or –treatment effect or true group differences (differences do exist in the population) ?

…and Some New Concepts H 1 : Alternate hypothesis H 1 : Alternate hypothesis –What we believe to be true –There is a change, difference, relationship But it’s easier to disprove than to prove, so… But it’s easier to disprove than to prove, so… H 0 : Null hypothesis H 0 : Null hypothesis –No change, no difference, no relationship –Try to prove this is wrong! –Disproving H 0 provides support for (but does not prove) H 1. Decide ahead of time which sample statistics (means) are: Decide ahead of time which sample statistics (means) are: –likely to be obtained if H 0 is true –likely to be obtained if H 0 not true (critical region!)

Figure 8-3 (p. 236): The set of potential samples is divided into those that are likely to be obtained and those that are very unlikely if the null hypothesis is true. What is this called? What is this value called? THE HYPOTHESIZED (NULL) DISTRIBUTION

Sampling Distribution Z-scores in a new light z = M – μ σ M z = M – μ σ M z = obtained M – hypothesized μ. standard error between M and μ z = obtained M – hypothesized μ. standard error between M and μ Ratio of: obtained difference (distance) typical, expected, standard distance Ratio of: obtained difference (distance) typical, expected, standard distance How far away from typical, or expected, is our sample? How far away from typical, or expected, is our sample?

Hypotheses A hypothesis states an expected relationship between two or more variables. A hypothesis states an expected relationship between two or more variables. May be causal: one variable causes the other. May be causal: one variable causes the other. May be descriptive: one variable is simply related to the other. May be descriptive: one variable is simply related to the other. Much of this chapter focuses on causal hypotheses, from experimental studies (treatment group and control group) Much of this chapter focuses on causal hypotheses, from experimental studies (treatment group and control group) AB AB

Where do Hypotheses come from? Personal observations, opinions Personal observations, opinions Existing research Existing research Theory Theory Models Models –more specific and concrete than theories –usually describe specific relationships among constructs/variables

Scientific Hypotheses Must Be Testable: Can a test be designed? Testable: Can a test be designed? Falsifiable: Could it potentially be incorrect? Room to be disproven? Falsifiable: Could it potentially be incorrect? Room to be disproven? Precise: Is it clearly defined? Precise: Is it clearly defined? Rational: Does it fit with existing facts? Rational: Does it fit with existing facts? Parsimonious: Is it as simple as possible? Parsimonious: Is it as simple as possible?

Hypotheses cannot be proven! A single experiment cannot PROVE a hypothesis A single experiment cannot PROVE a hypothesis Hypotheses are only supported or not supported by scientific data. Hypotheses are only supported or not supported by scientific data. We add evidence toward confirmation or disconfirmation of a hypothesis We add evidence toward confirmation or disconfirmation of a hypothesis

A Hypothesis Test A Jury Trial The null hypothesis: The alpha level: The sample data: The critical region: The conclusion:

A Hypothesis Test A Jury Trial The null hypothesis: We assume there is no treatment (tx) effect until there is enough evidence to show otherwise. Assume an individual is innocent until proven guilty. The alpha level: We are confident that the tx does have an effect because it is very unlikely that the data could occur simply by chance. Jury must be convinced beyond a reasonable doubt before finding defendant guilty. The sample data: The research study is conducted to gather data (evidence) to demonstrate that the treatment had an effect. Prosecutor presents evidence to demonstrate defendant guilty. The critical region: Either the sample data fall in the critical region (enough evidence to reject H 0 ) or the data don’t fall into critical region (not enough evidence to reject H 0 ). Either there is enough evidence to convince jury that defendant is guilty, or there is not. The conclusion: If the data aren’t in the critical region, the decision is to “fail to reject the null hypothesis.” We have not proven that the null is true; we simply have failed to reject it. If there is not enough evidence, the decision is “not guilty”.

Directional vs. Nondirectional Tests (one-tailed) (two-tailed). Nondirectional hypothesis/test Nondirectional hypothesis/test –Critical region is split between both tails: on either side of the mean –Allows possibility that tx effect in either direction –More common, more conservative test Directional hypothesis/test Directional hypothesis/test –H 1 specifies direction of the effect / difference –Critical region is only in one tail (either above or below mean) –Less conservative

Error Type I: H o true (treatment does not have an effect), but: Type I: H o true (treatment does not have an effect), but: –Hypothesis test detects a false treatment effect –Reject H o even though it’s true –Think have support for H 1 even though it’s not true Type II: H o false (treatment does have an effect), but: Type II: H o false (treatment does have an effect), but: –Hypothesis test failed to detect it –Retain H o even though it’s false

Type I and Type II Error ACTUALSITUATION Decision No Effect / H o true Effect Exists / H o false Reject H o (decide effect does exist) Type I Error False positive (probability =  ) test too sensitive: detect nonexistent effect True positive (effect exists = correct!) Ability to detect effect=POWER p(reject false H o ) = 1-  good sensitivity to detect effect Retain H o (decide no effect exists) True negative (no effect=correct!) good specificity, selectivity to catch a non-effect Type II Error False negative (probability =  ) test too specific: fail to detect true effect

Power Probability that a test will correctly: Probability that a test will correctly: –reject a false null hypothesis –detect a real treatment effect in other words: Sensitivity of a statistical test to detect an effect that does exist Sensitivity of a statistical test to detect an effect that does exist

Group Activity! Make a graphical representation of these concepts: Make a graphical representation of these concepts: –Type I error (false positive) –Type II error (false negative) –True positive / negative –Alpha, Beta, Power –Sensitivity, specificity Some ideas: Some ideas: –Draw a concept map, decision tree, flow chart –Sketch all possibilities using the null distribution, the alternative distribution (see pp ) –Use sample data / a sample hypothesis (H o and H 1 ) –Use an analogy (like the trial by jury analogy)

Beyond p and chance: Effect Sizes Limitations of hypothesis tests: Limitations of hypothesis tests: –give ratio of obtained to expected difference –evaluate relative size of obtained difference (or tx effect) –Strongly influenced by sample size (big enough n  small σ M  easy to reject H o !) sample sizesample size Effect sizes: Effect sizes: –Give the absolute size of the obtained difference (or tx effect) –Scaled with std deviation, not std error –Thus, not influenced by sample size Cohen’s d Cohen’s d

Figure 8-15 (p. 268) The relationship between sample size and power. The top figure (a) shows a null distribution and a 20-point treatment distribution based on samples of n = 16 and a standard error of 10 points. Notice that the right-hand critical boundary is located in the middle of the treatment distribution so that roughly 50% of the treated samples fall in the critical region. In the bottom figure (b) the distributions are based on samples of n = 100 and the standard error is reduced to 4 points. In this case, essentially all of the treated samples fall in the critical region and the hypothesis test has power of nearly 100%.

For Wednesday Finish reading Chapter 9 Finish reading Chapter 9 Finish HW Chapter 9 (turn in start of class) Finish HW Chapter 9 (turn in start of class)