1 1 Lesson overview BA 592 Lesson I.6 Simultaneous Move Problems Chapter 4 Simultaneous Move Games with Pure Strategies … Lesson I.5 Simultaneous Move.

Slides:



Advertisements
Similar presentations
Monte Hall Problem Let’s Draw a Game Tree… Problem 6, chapter 2.
Advertisements

Nash’s Theorem Theorem (Nash, 1951): Every finite game (finite number of players, finite number of pure strategies) has at least one mixed-strategy Nash.
Basics on Game Theory Class 2 Microeconomics. Introduction Why, What, What for Why Any human activity has some competition Human activities involve actors,
BASICS OF GAME THEORY. Recap Decision Theory vs. Game Theory Rationality Completeness Transitivity What’s in a game? Players Actions Outcomes Preferences.
Clicker Question-A Chicken Game 0, 0 0, 1 1, 0 -10, -10 Swerve Hang Tough Swerve Hang Tough Player 2 Pllayer 1 Does either player have a dominant strategy?
This Segment: Computational game theory Lecture 1: Game representations, solution concepts and complexity Tuomas Sandholm Computer Science Department Carnegie.
1 1 BA 445 Lesson C.1 Strategic Uncertainty when Interests Conflict ReadingsReadings Baye “Mixed Strategies” (see the index) Dixit Chapter 7.
David Bryce © Adapted from Baye © 2002 Game Theory: The Competitive Dynamics of Strategy MANEC 387 Economics of Strategy MANEC 387 Economics.
VARIATIONS ON SIMPLE PAYOFF MATRICES Topic #6. The Payoff Matrix Given any payoff matrix, the standard assumption is – that the players choose their strategies.
The Stag Hunt Game. Introduction The stag hunt, first proposed by Rousseau, is a game which describes a conflict between safety and social cooperation.
Chapter 14 Infinite Horizon 1.Markov Games 2.Markov Solutions 3.Infinite Horizon Repeated Games 4.Trigger Strategy Solutions 5.Investing in Strategic Capital.
1 Game Theory. By the end of this section, you should be able to…. ► In a simultaneous game played only once, find and define:  the Nash equilibrium.
Chapter 6 Game Theory © 2006 Thomson Learning/South-Western.
Chapter 6 Game Theory © 2006 Thomson Learning/South-Western.
EC3224 Autumn Lecture #04 Mixed-Strategy Equilibrium
Non-cooperative Games Elon Kohlberg February 2, 2015.
Game Theory: Inside Oligopoly
1 1 Deep Thought BA 592 Lesson I.1 Introducing Games I can picture in my mind a world without war, a world without hate. And I can picture us attacking.
“President Obama faces a deadline of March 31 to decide the fate of G.M.,” i.e., whether to give GM additional loans or let GM go through a managed bankruptcy.
Short introduction to game theory 1. 2  Decision Theory = Probability theory + Utility Theory (deals with chance) (deals with outcomes)  Fundamental.
Game Theory.
Games with Simultaneous Moves I :Discrete Strategies
Chapter 6 © 2006 Thomson Learning/South-Western Game Theory.
5/16/20151 Game Theory Game theory was developed by John Von Neumann and Oscar Morgenstern in Economists! One of the fundamental principles of.
Game Theory Analysis Sidney Gautrau. John von Neumann is looked at as the father of modern game theory. Many other theorists, such as John Nash and John.
The Industrial Economy: Strategy Revision Session – 28 th April 2015.
Eponine Lupo.  Game Theory is a mathematical theory that deals with models of conflict and cooperation.  It is a precise and logical description of.
Check your (Mis)understanding? Number 3.5 page 79 Answer Key claims that: For player 1 a strictly dominates c For player 2, y strictly dominates w and.
1 1 Deep Thought BA 445 Lesson C.2 Cheap Talk when Interests Align A verbal contract isn’t worth the paper it’s written on. ~ Yogi Berra (Translation:
Game Theory Game theory models strategic behavior by agents who understand that their actions affect the actions of other agents. Useful to study –Company.
Game Theory Game theory models strategic behavior by agents who understand that their actions affect the actions of other agents. Been used to study –Company.
1 1 Lesson overview BA 592 Lesson I.10 Sequential and Simultaneous Move Theory Chapter 6 Combining Simultaneous and Sequential Moves Lesson I.10 Sequential.
Basics on Game Theory For Industrial Economics (According to Shy’s Plan)
THE PROBLEM OF MULTIPLE EQUILIBRIA NE is not enough by itself and must be supplemented by some other consideration that selects the one equilibrium with.
Nash Equilibrium Econ 171. Suggested Viewing A Student’s Suggestion: Video game theory lecture Open Yale Economics Ben Pollack’s Game Theory Lectures.
Lecture Slides Dixit and Skeath Chapter 4
QR 38, 2/27/07 Minimax and other pure strategy equilibria I.Minimax strategies II.Cell-by-cell inspection III.Three players IV.Multiple equilibria or no.
Game Theory Game theory models strategic behavior by agents who understand that their actions affect the actions of other agents. Been used to study –Market.
Game Applications Chapter 29. Nash Equilibrium In any Nash equilibrium (NE) each player chooses a “best” response to the choices made by all of the other.
UNIT II: The Basic Theory Zero-sum Games Nonzero-sum Games Nash Equilibrium: Properties and Problems Bargaining Games Bargaining and Negotiation Review.
Today: Some classic games in game theory
1 1 BA 210 Lesson III.5 Strategic Uncertainty when Interests ConflictOverviewOverview.
Social Choice Session 7 Carmen Pasca and John Hey.
Games of Strategy (Game Theory) Topic 1 – Part IV.
EC941 - Game Theory Prof. Francesco Squintani Lecture 5 1.
Worlds with many intelligent agents An important consideration in AI, as well as games, distributed systems and networking, economics, sociology, political.
Games People Play. 9: Collective-Action Games In collective-action games the interests of society and the individuals are in conflict.
Game-theoretic analysis tools Tuomas Sandholm Professor Computer Science Department Carnegie Mellon University.
THE “CLASSIC” 2 x 2 SIMULTANEOUS CHOICE GAMES Topic #4.
Chapters 29, 30 Game Theory A good time to talk about game theory since we have actually seen some types of equilibria last time. Game theory is concerned.
제 10 장 게임이론 Game Theory: Inside Oligopoly
Lecture 5 Introduction to Game theory. What is game theory? Game theory studies situations where players have strategic interactions; the payoff that.
Frank Cowell: Microeconomics Game Theory: Basics MICROECONOMICS Principles and Analysis Frank Cowell March 2004.
1 What is Game Theory About? r Analysis of situations where conflict of interests is present r Goal is to prescribe how conflicts can be resolved 2 2 r.
Strategic Behavior in Business and Econ Static Games of complete information: Dominant Strategies and Nash Equilibrium in pure and mixed strategies.
Games of pure conflict two-person constant sum games.
ECO290E: Game Theory Lecture 3 Why and How is Nash Equilibrium Reached?
Choose one of the numbers below. You will get 1 point if your number is the closest number to 3/4 of the average of the numbers chosen by all class members,
By: Donté Howell Game Theory in Sports. What is Game Theory? It is a tool used to analyze strategic behavior and trying to maximize his/her payoff of.
Games, Strategies, and Decision Making By Joseph Harrington, Jr. First Edition Chapter 4: Stable Play: Nash Equilibria in Discrete Games with Two or Three.
Game Theory Game theory models strategic behavior by agents who understand that their actions affect the actions of other agents. Been used to study –Market.
Game theory basics A Game describes situations of strategic interaction, where the payoff for one agent depends on its own actions as well as on the actions.
Check your (Mis)understanding?
Simultaneous Move Games: Discrete Strategies
Learning 6.2 Game Theory.
Chapter 30 Game Applications.
Game Theory Day 3.
UNIT II: The Basic Theory
Game Theory: Nash Equilibrium
Game Theory: The Nash Equilibrium
Presentation transcript:

1 1 Lesson overview BA 592 Lesson I.6 Simultaneous Move Problems Chapter 4 Simultaneous Move Games with Pure Strategies … Lesson I.5 Simultaneous Move Theory Lesson I.6 Simultaneous Move Problems Each Example Game Introduces some Game Theory Problems Example 1: Pure CoordinationExample 1: Pure Coordination Example 2: AssuranceExample 2: Assurance Example 3: Battle of the SexesExample 3: Battle of the Sexes Example 4: ChickenExample 4: Chicken Example 5: No Equilibrium in Pure StrategiesExample 5: No Equilibrium in Pure Strategies Practice ExamplesPractice Examples Lesson I.7 Simultaneous Move Applications

2 2 BA 592 Lesson I.6 Simultaneous Move Problems Coordination Games have multiple Nash equilibria even after any dominated strategies are eliminated. Such games are hard problems to solve with game theory. Example 1: Pure Coordination

3 3 BA 592 Lesson I.6 Simultaneous Move Problems Coordination Games can be solved if the players can communicate and can agree on one Nash equilibrium. By definition of Nash equilibrium, the agreement is self enforcing: each side has no reason to break the agreement if they believe the other side will keep the agreement. Coordination games can be solved even if agreements are impossible. All that is required is the convergence (focusing) of beliefs about other players’ strategies on a focal point. Specifically, first recognize that players are, in fact, playing with all humanity, past and present, in one large game from the beginning of time. Hence, the game currently considered is only a subgame. In particular, players may have historic actions and outcomes to focus their expectations about the strategies of other players on a focal point. Example 1: Pure Coordination

4 4 BA 592 Lesson I.6 Simultaneous Move Problems Pure Coordination Games are those coordination games with equal payoffs for each Nash equilibrium. Agreements on one Nash equilibrium are simple in pure coordination games since no player cares which equilibrium is selected. Example 1: Pure Coordination

5 5 BA 592 Lesson I.6 Simultaneous Move Problems Harry and Sally meet when she gives him a ride to New York after they both graduate from the University of Chicago. They agree to meet at 7:00 at Joe's Shanghai Chinese Food Restaurant in New York. At 6:45, both remember that Joe has two restaurants, one in the Flatiron District and one in the Theater District. Define the normal form for this Pure Coordination Game, then predict an equilibrium if Harry and Sally cannot communicate further to agree on the particular restaurant. Example 1: Pure Coordination

6 6 BA 592 Lesson I.6 Simultaneous Move Problems If the Flatiron District and the Theater District are equally distant and equally desireable, then here is a normal form consistent with the data: Example 1: Pure Coordination

7 7 BA 592 Lesson I.6 Simultaneous Move Problems There are no dominate or dominated strategies, and there are two Nash equilibria. Harry and Sally should think about which of the two districts would naturally come to mind. If, say, they had previously discussed the theater, then they should choose the restaurant in the theater district. Example 1: Pure Coordination

8 8 BA 592 Lesson I.6 Simultaneous Move Problems Assurance Games are those coordination games where one of the Nash equilibria is preferred by all players. Thus, each player would select the jointly-preferred equilibrium strategy if they could be assured all other players will do likewise. Agreements on one Nash equilibrium are simple in pure coordination games since each player prefers the same equilibrium. If agreements cannot be communicated, the preferred equilibrium can be a natural focal point. Example 2: Assurance

9 9 BA 592 Lesson I.6 Simultaneous Move Problems Philosopher Jean-Jacques Rousseau described two individuals going out on a hunt. Each can individually choose to hunt a stag or hunt a hare. Each player must choose an action without knowing the choice of the other. If an individual hunts a stag, he must have the cooperation of his partner in order to succeed. An individual can get a hare by himself, but a hare is worth less than his share of a stag. This is taken to be an important analogy for social cooperation. Define a normal form for this Stag Hunt Game, then predict an equilibrium. Example 2: Assurance

10 BA 592 Lesson I.6 Simultaneous Move Problems Here is a normal form consistent with the data: On the one hand, the preferred outcome is, by definition, a natural focal point. On the other hand, players may have a mutual history of watching Bugs Bunny, which could focus their expectations about the Hare strategy. Example 2: Assurance

11 BA 592 Lesson I.6 Simultaneous Move Problems Another example of successful cooperation in a “stag hunt” is the hunting practice of orcas (known as carousel feeding). Orcas cooperatively corral large schools of fish to the surface and stun them by hitting them with their tails. Since this requires that the fish have no way to escape, it requires the cooperation of many orcas. Example 2: Assurance

12 BA 592 Lesson I.6 Simultaneous Move Problems Battle of the Sexes Games are those coordination games where one of the Nash equilibria is preferred by one player and the other equilibrium by the other players, and where all equilibria involve the players choosing the same strategy. In particular, each player would select their preferred-equilibrium strategy if they could be assured the other player will choose the same equilibrium. Example 3: Battle of the Sexes

13 BA 592 Lesson I.6 Simultaneous Move Problems Agreements on one Nash equilibrium are complicated in Battle of the Sexes Games since each player prefers a different equilibrium, so any agreement could be rejected as unfair. If agreements are impossible, finding a focal point is also more complicated because there is no jointly-preferred equilibrium to focus beliefs. Reputation becomes important: if players have a mutual history of one player dominating or playing tough, players could focus their expectations on the equilibrium that most benefits that player. Another solution is a player strategically committing to his preferred-equilibrium strategy, or strategically eliminating some alternative strategies. Example 3: Battle of the Sexes

14 BA 592 Lesson I.6 Simultaneous Move Problems A couple agreed to meet this evening, but cannot recall if they will be attending the opera or a football game. The husband would most of all like to go to the football game. The wife would like to go to the opera. Both would prefer to go to the same place rather than different ones. If they cannot communicate, where should they go? Define a normal form for this Battle of the Sexes Game, then predict an equilibrium. Example 3: Battle of the Sexes

15 BA 592 Lesson I.6 Simultaneous Move Problems Here is a normal form consistent with the data: There are two Nash equilibria, either of which can be obtained by agreement. If no such agreement is possible or acceptable, then the Football equilibrium can be a focal point if the husband has a reputation for toughness, or the Opera equilibrium if the wife has a reputation for toughness. Or, the husband can commit to the Football equilibrium by strategically eliminating his Opera strategy by breaking his glasses, and letting his wife know. Example 3: Battle of the Sexes

16 BA 592 Lesson I.6 Simultaneous Move Problems Chicken Games are the same as Battle of the Sexes Games except all equilibria involve the players choosing different strategies. (Some call such games anti-coordination games.) In particular, each player would select their preferred-equilibrium strategy if they could be assured the other player will choose the same equilibrium. Example 4: Chicken

17 BA 592 Lesson I.6 Simultaneous Move Problems Solving Chicken Games has the same complications and possibilities as solving Battle of the Sexes Games: Agreements on one Nash equilibrium are complicated since each player prefers a different equilibrium, and finding a focal point is complicated because there is no jointly-preferred equilibrium to focus beliefs. Reputation for toughness or strategic commitment can possibly solve Chicken games. Example 4: Chicken

18 BA 592 Lesson I.6 Simultaneous Move Problems Chicken is an influential model of conflict for two players. The principle of the game is that while each player prefers not to yield to the other, the outcome where neither player yields is the worst possible one for both players. The name "Chicken" has its origins in a game in which two drivers drive towards each other on a collision course: one must swerve, or both may die in the crash, but if one driver swerves and the other does not, the one who swerved will be called a “chicken”. The game has also been used to describe the mutual assured destruction of nuclear warfare. Define a normal form for this Chicken Game for Speed Racer and Racer X, then predict an equilibrium. Example 4: Chicken

19 BA 592 Lesson I.6 Simultaneous Move Problems Here is a normal form consistent with the data: There are two Nash equilibria, either of which can be obtained by agreement. If no such agreement is possible or acceptable, then Straight-Swerve can be a focal point if the Speed has a reputation for toughness, or Swerve-Straight if Racer has a reputation for toughness. Or, Speed can commit to the Straight-Swerve equilibrium by strategically eliminating his Swerve strategy by tying his steering wheel, and letting Racer X know. Example 4: Chicken

20 BA 592 Lesson I.6 Simultaneous Move Problems Strategic Uncertainty persists in those games that have no Nash equilibrium in pure strategies. Example 5: No Equilibrium in Pure Strategies

21 BA 592 Lesson I.6 Simultaneous Move Problems Bob Gustavson, professor of health science and men's soccer coach at John Brown University in Siloam Springs, Arkansas, says “When you consider that a ball can be struck anywhere from miles per hour, there's not a whole lot of time for the goalkeeper to react”. Gustavson says skillful goalies use cues from the kicker. They look at where the kicker's plant foot is pointing and the posture during the kick. Some even study tapes of opponents. But most of all they take a guess — jump left or right after the kicker has committed himself. Define a normal form for this Soccer Game, then try to predict an equilibrium. Example 5: No Equilibrium in Pure Strategies

22 BA 592 Lesson I.6 Simultaneous Move Problems There is no Nash equilibrium! If the Kicker is known to kick Left, the Goalie guards Left. But if the Goalie is known to guard Left, the Kicker kicks Right. But if the Kicker is known to kick Right, the Goalie guards Right. But if the Goalie is known to guard Right, the Kicker kicks Left. An so on. So strategic uncertainty persists about kicking and guarding. Example 4: Chicken Here is a normal form consistent with the data, with payoffs in probability of scoring:

23 End of Lesson I.6 BA 592 Game Theory BA 592 Lesson I.6 Simultaneous Move Problems