1 Structures for In-Network Moving Object Tracking inWireless Sensor Networks Chih-Yu Lin and Yu-Chee Tseng Broadband Wireless Networking Symp. (BroadNet),

Slides:



Advertisements
Similar presentations
Chapter 5: Tree Constructions
Advertisements

Differential Forms for Target Tracking and Aggregate Queries in Distributed Networks Rik Sarkar Jie Gao Stony Brook University 1.
A Distributed Algorithm for the Dead End Problem of Location Based Routing in Sensor Networks Le Zou, Mi Lu, Zixiang Xiong, Department of Electrical Engineering,
Presented By- Sayandeep Mitra TH SEMESTER Sensor Networks(CS 704D) Assignment.
산업 및 시스템 공학과 통신시스템 및 인터넷보안연구실 김효원 Optimizing Tree Reconfiguration for Mobile Target Tracking in Sensor Networks Wensheng Zhang and Guohong Cao.
Generated Waypoint Efficiency: The efficiency considered here is defined as follows: As can be seen from the graph, for the obstruction radius values (200,
Junction Trees: Motivation Standard algorithms (e.g., variable elimination) are inefficient if the undirected graph underlying the Bayes Net contains cycles.
H-SPREAD: A Hybrid Multipath Scheme for Secure and Reliable Data Collection in Wireless Sensor Networks Wenjing Lou, Member, IEEE, and Younggoo Kwon.
2001 Winter CS215 Course Project Simulation Comparison of Routing Algorithms for Multicast with Bandwidth Reservation Zhihong Duan
On the Construction of Energy- Efficient Broadcast Tree with Hitch-hiking in Wireless Networks Source: 2004 International Performance Computing and Communications.
A Hierarchical Energy-Efficient Framework for Data Aggregation in Wireless Sensor Networks IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 55, NO. 3, MAY.
SMART: A Scan-based Movement- Assisted Sensor Deployment Method in Wireless Sensor Networks Jie Wu and Shuhui Yang Department of Computer Science and Engineering.
Dynamic Medial Axis Based Motion Planning in Sensor Networks Lan Lin and Hyunyoung Lee Department of Computer Science University of Denver
LPT for Data Aggregation in Wireless Sensor networks Marc Lee and Vincent W.S Wong Department of Electrical and Computer Engineering, University of British.
Extending Network Lifetime for Precision-Constrained Data Aggregation in Wireless Sensor Networks Xueyan Tang School of Computer Engineering Nanyang Technological.
Online Data Gathering for Maximizing Network Lifetime in Sensor Networks IEEE transactions on Mobile Computing Weifa Liang, YuZhen Liu.
1 Efficient Placement and Dispatch of Sensors in a Wireless Sensor Network Prof. Yu-Chee Tseng Department of Computer Science National Chiao-Tung University.
P2P Course, Structured systems 1 Introduction (26/10/05)
Energy Aware Directed Diffusion for Wireless Sensor Networks Jisul Choe, 2Keecheon Kim Konkuk University, Seoul, Korea
2005/5/16, 30Object Tracking in Wireless Sensor Networks 1/49 Object Tracking in Wireless Sensor Networks Cheng-Ta Lee.
1 The Orphan Problem in ZigBee- based Wireless Sensor Networks IEEE Trans. on Mobile Computing (also in MSWiM 2007) Meng-Shiuan Pan and Yu-Chee Tseng Department.
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2007 (TPDS 2007)
LPT for Data Aggregation in Wireless Sensor Networks Marc Lee and Vincent W.S. Wong Department of Electrical and Computer Engineering, University of British.
Hongyu Gong, Lutian Zhao, Kainan Wang, Weijie Wu, Xinbing Wang
Efficient Gathering of Correlated Data in Sensor Networks
Computing and Communicating Functions over Sensor Networks A.Giridhar and P. R. Kumar Presented by Srikanth Hariharan.
Network Aware Resource Allocation in Distributed Clouds.
Message-Optimal Connected Dominating Sets in Mobile Ad Hoc Networks Paper By: Khaled M. Alzoubi, Peng-Jun Wan, Ophir Frieder Presenter: Ke Gao Instructor:
Shih-Chieh Lee 1 Detection and Tracking of Region-Based Evolving Targets in Sensor Networks Chunyu Jiang, Guozhu Dong, Bin Wang Wright State University.
Rate-based Data Propagation in Sensor Networks Gurdip Singh and Sandeep Pujar Computing and Information Sciences Sanjoy Das Electrical and Computer Engineering.
Energy-Aware Scheduling with Quality of Surveillance Guarantee in Wireless Sensor Networks Jaehoon Jeong, Sarah Sharafkandi and David H.C. Du Dept. of.
COSC 2007 Data Structures II Chapter 14 Graphs III.
Boundary Recognition in Sensor Networks by Topology Methods Yue Wang, Jie Gao Dept. of Computer Science Stony Brook University Stony Brook, NY Joseph S.B.
De-Nian Young Ming-Syan Chen IEEE Transactions on Mobile Computing Slide content thanks in part to Yu-Hsun Chen, University of Taiwan.
1 Cross-Layer, Energy-Efficient Design for Supporting Continuous Queries in Wireless Sensor Networks A Quorum-Based Approach Chia-Hung Tsai, Tsu-Wen Hsu,
Efficient Deployment Algorithms for Prolonging Network Lifetime and Ensuring Coverage in Wireless Sensor Networks Yong-hwan Kim Korea.
Content Addressable Network CAN. The CAN is essentially a distributed Internet-scale hash table that maps file names to their location in the network.
Benjamin AraiUniversity of California, Riverside Reliable Hierarchical Data Storage in Sensor Networks Song Lin – Benjamin.
ENERGY-EFFICIENT FORWARDING STRATEGIES FOR GEOGRAPHIC ROUTING in LOSSY WIRELESS SENSOR NETWORKS Presented by Prasad D. Karnik.
EBAS: An Energy-Efficient Event Boundary Approximated Suppression Algorithm in Wireless Sensor Networks Longjiang Guo Heilongjiang University
Load-Balancing Routing in Multichannel Hybrid Wireless Networks With Single Network Interface So, J.; Vaidya, N. H.; Vehicular Technology, IEEE Transactions.
Optimization of Wavelength Assignment for QoS Multicast in WDM Networks Xiao-Hua Jia, Ding-Zhu Du, Xiao-Dong Hu, Man-Kei Lee, and Jun Gu, IEEE TRANSACTIONS.
An Energy Efficient Hierarchical Clustering Algorithm for Wireless Sensor Networks Seema Bandyopadhyay and Edward J. Coyle Presented by Yu Wang.
Register Placement for High- Performance Circuits M. Chiang, T. Okamoto and T. Yoshimura Waseda University, Japan DATE 2009.
WEAR: A Balanced, Fault-Tolerant, Energy-Aware Routing Protocol for Wireless Sensor Networks Kewei Sha, Junzhao Du, and Weisong Shi Wayne State University.
REECH ME: Regional Energy Efficient Cluster Heads based on Maximum Energy Routing Protocol Prepared by: Arslan Haider. 1.
Neighborhood-Based Topology Recognition in Sensor Networks S.P. Fekete, A. Kröller, D. Pfisterer, S. Fischer, and C. Buschmann Corby Ziesman.
1 Shape Segmentation and Applications in Sensor Networks Xianjin Xhu, Rik Sarkar, Jie Gao Department of CS, Stony Brook University INFOCOM 2007.
Efficient Computing k-Coverage Paths in Multihop Wireless Sensor Networks XuFei Mao, ShaoJie Tang, and Xiang-Yang Li Dept. of Computer Science, Illinois.
Copyright © 2011, Scalable and Energy-Efficient Broadcasting in Multi-hop Cluster-Based Wireless Sensor Networks Long Cheng ∗ †, Sajal K. Das†,
Rate-Based Channel Assignment Algorithm for Multi-Channel Multi- Rate Wireless Mesh Networks Sok-Hyong Kim and Young-Joo Suh Department of Computer Science.
Constructing a Message-Pruning Tree with Minimum Cost for Tracking Moving Objects in Wireless Sensor Networks Is NP- Complete and an Enhanced Data Aggregation.
Maximizing Lifetime per Unit Cost in Wireless Sensor Networks
Tree Constructions Distributed Algorithms for Multi-Agent Networks Instructor: K. Sinan YILDIRIM.
1 Efficient In-Network Moving Object Tracking in Wireless Sensor Networks Chih-Yu Lin, Student Member, IEEE, Wen-Chih Peng, Member, IEEE, and Yu-Chee Tseng,
A Framework for Reliable Routing in Mobile Ad Hoc Networks Zhenqiang Ye Srikanth V. Krishnamurthy Satish K. Tripathi.
Efficient Resource Allocation for Wireless Multicast De-Nian Yang, Member, IEEE Ming-Syan Chen, Fellow, IEEE IEEE Transactions on Mobile Computing, April.
Localized Low-Power Topology Control Algorithms in IEEE based Sensor Networks Jian Ma *, Min Gao *, Qian Zhang +, L. M. Ni *, and Wenwu Zhu +
Connected Point Coverage in Wireless Sensor Networks using Robust Spanning Trees IEEE ICDCSW, 2011 Pouya Ostovari Department of Computer and Information.
Structures for In-Network Moving Object Tracking in Wireless Sensor Networks Chih-Yu Lin and Yu-Chee Tseng Department of Computer Science and Information.
On Mobile Sink Node for Target Tracking in Wireless Sensor Networks Thanh Hai Trinh and Hee Yong Youn Pervasive Computing and Communications Workshops(PerComW'07)
Efficient Placement and Dispatch of Sensors in a Wireless Sensor Network You-Chiun Wang, Chun-Chi Hu, and Yu-Chee Tseng IEEE Transactions on Mobile Computing.
Construction of Optimal Data Aggregation Trees for Wireless Sensor Networks Deying Li, Jiannong Cao, Ming Liu, and Yuan Zheng Computer Communications and.
Introduction Wireless Ad-Hoc Network  Set of transceivers communicating by radio.
Chapter 11. Chapter Summary  Introduction to trees (11.1)  Application of trees (11.2)  Tree traversal (11.3)  Spanning trees (11.4)
A Place-based Model for the Internet Topology Xiaotao Cai Victor T.-S. Shi William Perrizo NDSU {Xiaotao.cai, Victor.shi,
Prof. Yu-Chee Tseng Department of Computer Science
Net 435: Wireless sensor network (WSN)
Introduction Wireless Ad-Hoc Network
Presentation transcript:

1 Structures for In-Network Moving Object Tracking inWireless Sensor Networks Chih-Yu Lin and Yu-Chee Tseng Broadband Wireless Networking Symp. (BroadNet), 2004.

2 Outlines Introduction Tree construction algorithms DAT (Deviation-Avoidance Tree) Z-DAT (Zone-based DAT) Simulation Results Conclusion

3 Introduction message-pruning tree a logical weighted tree such that the total communication cost is as low as possible weight of edge (a, b) : wT(a,b) the minimum hop count between a and b in G event rate the frequency of objects traveling from one sensor to another in statistics detected list : DLa = (L0, L1,..., Lk) each node a in T maintains a detected list DLa L0 is the set of objects currently inside the coverage of sensor a itself

4

5 Introduction(Cont.) departure event : dep(o, a, b) arrival event : arv(o, b, a) par(u, v) : the root of the minimum subtree in T that includes both u and v. distT (x, y) : the sum of weights of the edges on the path connecting x and y in T. distT (F,K) = wT (F, I) + wT (I, J) + wT (J,K) = 3, although the minimum hop count between F and K is 2 in G.

6 cost function of T by counting the number of events transmitted

7 STUN-Scalable Tracking Using Networked Sensors Hierarchically record information about the presence of the objects. Leaves : sensors Root : query point others : communication nodes. Key action : Message pruning

8 DAB-Drain-And-Balance Goal : building efficient tracking hierarchies In a bottom-up fashion  from leaves to root. Draining threshold : event rate thresholds. Balance : merge the adjacent tree. Method : high rate subsets of leaves merge first. Input : a sensor graph G(V G,E G,l G,w) Out : a hierarchy tree T = (V T,E T,l T ) Draining threshold : H = {h 1,h 2, …,h k }

9 DAB - Example

10

11 Figure 4. Four possible message-pruning trees with the corresponding graph shown in Fig. 1(b). Those trees in (a), (c), and (d) are deviation-avoidance trees.

12 message-pruning trees The tree in (b) is not a deviation avoidance tree (DAT), since distT(E,A) is 3 and distG(E,A) is 2. The average values of distT (u, par(u, v)) + distT (v, par(u, v)) for each (u, v) ∈ EG are 3.591, 2.864, and in (a), (c), and (d) respectively.

13 2 message-pruning tree structures DAT (Deviation-Avoidance Tree) a greedy approach based on a deviation- avoidance idea Z-DAT (Zone-based DAT) a grid zone-based approach

14 DAT To find a tree T that incurs a low C(T), from Eq. 1 and Eq. 2,we would expect T is deviation-free u deviates from its shortest path to the sink each sensor ’ s parent is its neighbor Only the tree shown in Fig. 4(d) satisfies this observation an edge (u, v) with a higher wG(u, v) should be merged into T early and par(u, v) should be either u or v

15 DAT(Cont1.) edge(u, v) will be included into T only if u and v belong to different subtrees in T. edge(u, v) will be included into T only if at least one of them is a root of a subtree and the other node is on a shortest path in G from the former node to the sink A link passing these checking will then be included into T

16 DAT(Cont2.) As a result of our construction,T is always a subgraph of G and wT (u, v) = 1 for all (u, v) ∈ ET Theorem 2 : If G is connected, then the T constructed by the DAT algorithm is connected, deviation-free, and is a shortest path tree rooted at the sink.

17

18 Z-DAT (Zone-based DAT) Assumes the sensing field to be a square area and takes two input parameters α and δ T is constructed in an iterative manner. Partition the sensing field horizontally and vertically into α strips. for each boundary between strips, it is allowed to move up and down no more than a distance of δ from its original position Totally partitioned into α × α square-like zones, α2 subtrees.

19 Figure 9. An example of ZDA algorithm with α = 4. (a) In the first iteration, we divide the field into α×α zones and adjust the boundary according to δ. (b) In the second iteration, we divide α by 2 until a single tree is obtained.

20

21 Simulation deploy 4096 sensors in a 64 × 64 grid network, one in each grid. a 256 × 256 grid network, 4096 sensors are randomly deployed. the sensing field to be a square of size r × r level-1 regions : divides the sensing field into four sub-regions probability p1 : leave its current leavel-1 region probability 1 − p1 : stay in its current leavel-1 region

22 Simulation(Cont1.) level-2 regions : each level-1 region is recursively divided into four smaller sub-regions probability p2 : leave its current leavel-2 region probability 1 − p2 : stay in its current leavel-2 region Level-i region : an exponential probability C is a positive constant d is the total number of levels a higher C will exhibit higher locality in movement

23 Simulation(Cont2.) consider two performance metrics updating cost C(T) querying cost Q(T) : the cost spent on transmitting querying requests and replies when objects ’ locations are inquired from the sink only count the numbers of messages without considering message sizes

24 Simulation(Cont3.) Compare 2 scheme non-message-pruning tree scheme always sends all location updates to the sink through the shortest path the sink always has the most up-to-date information has no querying cost, but may incur high updating cost

25 Simulation(Cont4.) DAB assumes that all sensors are leaf nodes of the message-pruning tree there is a logical tree to connect these leaf nodes assume that whenever a new subtree is formed by DAB, the sensor that is closest to the sink will be the root of the subtree

26 Results compare the updating costs C(T) generate 64 objects and adopt the 5-step DAB tree construction Z-DAT, we set α = 20 and δ = 1 grid. Fig. 10(a) (b) (c) (d) A larger C, i.e. a higher moving locality, leads to lower updating cost. The non-message-pruning scheme has the highest cost because each movement will incur a lot of update messages.

27

28 Results(Cont1.) compare the querying cost Q(T) Fig. 11 The querying cost generally increases linearly with the querying rate. There is no querying cost for the non-message- pruning scheme. The querying costs for DAT and Z-DAT schemes are always the same because querying messages are always transmitted along shortest paths Not using shortest paths, DAB has higher Q(T) that depends on the tree structure in DAB.

29

30 Results(Cont2.) combined updating and querying costs Fig. 12 as the querying rate becomes higher, using message-pruning tree will gradually lose its advantage because non-message-pruning scheme has no querying cost as C becomes smaller, objects will move more frequently, thus leading to more saving in using DAB/DAT/Z-DAT

31 Figure 12. Comparison of combined (updating plus querying) costs in a 64 × 64 grid: (a) sink at a corner and C = 1.0, (b) sink at the center and C = 1.0, (c) sink at a corner and C = 0.1, and (d) sink at the center and C = 0.1.

32 Conclusion Present 2 message-pruning structures for moving object tracking in a sensor network.