225 (1) Finding Instantaneous Frequency (2) Signal Decomposition (3) Filter Design (4) Sampling Theory (5) Modulation and Multiplexing (6) Electromagnetic.

Slides:



Advertisements
Similar presentations
An Introduction to Time-Frequency Analysis
Advertisements

117 V. Wigner Distribution Function Definition 1: Definition 2: Another way for computation Definition 1: Definition 2: V-A Wigner Distribution Function.
Shearing NAME : YI-WEI CHEN STUDENT NUMBER : R
1 生物計算期末作業 暨南大學資訊工程系 2003/05/13. 2 compare f1 f2  只比較兩個檔案 f1 與 f2 ,比完後將結果輸出。 compare directory  以兩兩比對的方式,比對一個目錄下所有檔案的相 似程度。  將相似度很高的檔案做成報表輸出,報表中至少要.
Section 1.2 Describing Distributions with Numbers 用數字描述分配.
Event Sampling 事件取樣法. 關心重點為「事件」本身明確的焦點 行為 清楚掌握主題 - 當「事件」出現時才開 始記錄 記錄程序 等待目標事件的發生 開始記錄 事件結束,停止記錄.
Advanced Chemical Engineering Thermodynamics
: Boxes ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 11003: Boxes 解題者:蔡欣燁 解題日期: 2007 年 3 月 19 日.
亂數產生器安全性評估 之統計測試 SEC HW7 姓名:翁玉芬 學號:
消費者物價指數反映生活成本。當消費者物價指數上升時,一般家庭需要花費更多的金錢才能維持相同的生活水準。經濟學家用物價膨脹(inflation)來描述一般物價持續上升的現象,而物價膨脹率(inflation rate)為物價水準的變動百分比。
STAT0_sampling Random Sampling  母體: Finite population & Infinity population  由一大小為 N 的有限母體中抽出一樣本數為 n 的樣 本,若每一樣本被抽出的機率是一樣的,這樣本稱 為隨機樣本 (random sample)
5.1 Rn上之長度與點積 5.2 內積空間 5.3 單範正交基底:Gram-Schmidt過程 5.4 數學模型與最小平方分析
第 4 章 迴歸的同步推論與其他主題.
第一章 信號與系統初論 信號的簡介與DSP的處理方式。 系統特性與穩定性的判定方法。 以MATLAB驗證系統的線性、非時變、因果等特性。
Part 1 Understanding Data Chapter 1 Examining Distributions Chapter 2 Examining Relationships Chapter 3 Producing Data.
基礎物理總論 基礎物理總論 熱力學與統計力學(三) Statistical Mechanics 東海大學物理系 施奇廷.
Monte Carlo Simulation Part.2 Metropolis Algorithm Dept. Phys. Tunghai Univ. Numerical Methods C. T. Shih.
2009fallStat_samplec.i.1 Chap10 Sampling distribution (review) 樣本必須是隨機樣本 (random sample) ,才能代表母體 Sample mean 是一隨機變數,隨著每一次抽出來的 樣本值不同,它的值也不同,但會有規律性 為了要知道估計的精確性,必需要知道樣本平均數.
1 第四章 多變數函數的微分學 § 4.1 偏導數定義 定義 極限值 ■. 2 定理 極限值的基本定理 (1) 極限值的唯一性 : 若 存在,則 其值必為唯一。 (2) 若 且 ( 與 為常數 ) , 則 且 為常數且.
Chapter 13 塑模靜態觀點:物件圖 Static View : Object Diagram.
Introduction to Java Programming Lecture 17 Abstract Classes & Interfaces.
: The largest Clique ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11324: The largest Clique 解題者:李重儀 解題日期: 2008 年 11 月 24 日 題意: 簡單來說,給你一個 directed.
Matlab Assignment Due Assignment 兩個 matlab 程式 : Eigenface : Eigenvector 和 eigenvalue 的應用. Fractal : Affine transform( rotation, translation,
: War on Weather ★★☆☆☆ 題組: Contest Volumes Archive with Online Judge 題號: 10915: War on Weather 解題者:陳明凱 題意:題目總共會給你 k 個點座標代表殺手衛星的位置, 距離地球表面最少 50 公里以上,並且會給你.
7.1 背景介紹 7.2 多解析度擴展 7.3 一維小波轉換 7.4 快速小波轉換 7.5 二維小波轉換 7.6 小波封包
Fourier Series. Jean Baptiste Joseph Fourier (French)(1763~1830)
短缺,盈餘與均衡. 遊戲規則  老師想出售一些學生喜歡的小食。  老師首先講出價錢,有興趣買的請舉手。
緒論 統計的範圍 敘述統計 推論統計 有母數統計 無母數統計 實驗設計 統計的本質 大量 數字 客觀.
: Multisets and Sequences ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 11023: Multisets and Sequences 解題者:葉貫中 解題日期: 2007 年 4 月 24 日 題意:在這個題目中,我們要定義.
:Nuts for nuts..Nuts for nuts.. ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 10944:Nuts for nuts.. 解題者:楊家豪 解題日期: 2006 年 2 月 題意: 給定兩個正整數 x,y.
公用品.  該物品的數量不會因一人的消費而受到 影響,它可以同時地被多人享用。 角色分配  兩位同學當我的助手,負責:  其餘各人是投資者,每人擁有 $100 , 可以投資在兩種資產上。  記錄  計算  協助同學討論.
: Problem G e-Coins ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 10306: Problem G e-Coins 解題者:陳瀅文 解題日期: 2006 年 5 月 2 日 題意:給定一個正整數 S (0
: THE SAMS' CONTEST ☆☆★★★ 題組: Problem Set Archive with Online Judge 題號: 10520: THE SAMS' CONTEST 解題者:陳相廷,林祺光 解題日期: 2006 年 5 月 22 日 題意:依以下式子,給定 n.
Section 4.2 Probability Models 機率模式. 由實驗看機率 實驗前先列出所有可能的實驗結果。 – 擲銅板:正面或反面。 – 擲骰子: 1~6 點。 – 擲骰子兩顆: (1,1),(1,2),(1,3),… 等 36 種。 決定每一個可能的實驗結果發生機率。 – 實驗後所有的實驗結果整理得到。
: GCD - Extreme II ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11426: GCD - Extreme II 解題者:蔡宗翰 解題日期: 2008 年 9 月 19 日 題意: 最多 20,000 組測資,題目會給一個數字.
2010 MCML introduction 製作日期: 2010/9/10 製作人 : 胡名霞.
845: Gas Station Numbers ★★★ 題組: Problem Set Archive with Online Judge 題號: 845: Gas Station Numbers. 解題者:張維珊 解題日期: 2006 年 2 月 題意: 將輸入的數字,經過重新排列組合或旋轉數字,得到比原先的數字大,
學習理論與整合模式 這章節所討論的兩大教學理論 ( 指導 / 建構 ) 有 何差異性 ? 當學習愈上瓶頸 指導是與建構式的解決方式各 是什麼 ? 指導式的教學理論解決什麼樣的教學問題 ? 科 技在教學上的運用又如何這樣的理想 ? 建構式的教學理論解決什麼樣的教學問題 ? 科 技在教學上的運用又如何這樣的理想.
第五章 內積空間 5.1 Rn上之長度與點積 5.2 內積空間 5.3 單範正交基底:Gram-Schmidt過程
Extreme Discrete Summation ★★★★☆ 題組: Contest Archive with Online Judge 題號: Extreme Discrete Summation 解題者:蔡宗翰 解題日期: 2008 年 10 月 13 日.
Building a knowledge base for MIS research: A meta-analysis of a systems success model Mark I Hwang, John C Windsor, Alan Pryor Information Resources Management.
Probability Distribution 機率分配 汪群超 12/12. 目的:產生具均等分配的數值 (Data) ,並以 『直方圖』的功能計算出數值在不同範圍內出現 的頻率,及繪製數值的分配圖,以反應出該 機率分配的特性。
Chapter 7 Sampling Distribution
INTRODUCTION TO MATLAB SHAWNNTOU. What Is MATLAB? MATLAB® is a high-performance language for technical computing. MATLAB® is a high-performance language.
冷凍空調自動控制 - 系統性能分析 李達生. Focusing here … 概論 自動控制理論發展 自控系統設計實例 Laplace Transform 冷凍空調自動控制 控制系統範例 控制元件作動原理 控制系統除錯 自動控制理論 系統穩定度分析 系統性能分析 PID Controller 自動控制實務.
統計緒論 _ Chap2 資料整理 2.1 基本的資料整理  排序,例: length of 60 sea trouts ( 課本 p13 ) ( 可用 EXCEL)  長條圖,例 2.1 number of times of delay in a week for the 48 flights.
: Searching for Nessy ★☆☆☆☆ 題組: Problem Set Archive with Online Judge 題號: 11044: Searching for Nessy 解題者:王嘉偉 解題日期: 2007 年 5 月 22 日 題意: 給定 case 數量.
: SAM I AM ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11419: SAM I AM 解題者:李重儀 解題日期: 2008 年 9 月 11 日 題意: 簡單的說,就是一個長方形的廟裡面有敵人,然 後可以橫的方向開砲或縱向開砲,每次開砲可以.
第五章IIR數位濾波器設計 濾波器的功能乃對於數位信號進行處理﹐ 以滿足系統的需求規格。其作法為設計一 個系統的轉移函數﹐或者差分方程式﹐使 其頻率響應落在規格的範圍內。本章探討 的是其中一種方法﹐稱為Infinite impulse register(IIR)。 IIR架構說明。 各種不同頻帶(Band)濾波器的設計方法。
牽涉兩個變數的 Data Table 汪群超 11/1/98. Z=-X 2 +4X-Y 2 +6Y-7 觀察 Z 值變化的 X 範圍 觀察 Z 值變化的 Y 範圍.
: Finding Paths in Grid ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11486: Finding Paths in Grid 解題者:李重儀 解題日期: 2008 年 10 月 14 日 題意:給一個 7 個 column.
幼兒行為觀察與記錄 第八章 事件取樣法.
: Simple Minded Hashing ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 10912: Simple Minded Hashing 解題者:陳俊達 解題日期: 2008 年 5 月 02 日 題意: 給兩個正整數,長度.
Presenter: Hong Wen-Chih 2015/8/11. Outline Introduction Definition of fractional fourier transform Linear canonical transform Implementation of FRFT/LCT.
Introduction of Fractional Fourier Transform (FRFT) Speaker: Chia-Hao Tsai Research Advisor: Jian-Jiun Ding Digital Image and Signal Processing Lab Graduate.
1 柱體與錐體 1. 找出柱體與錐體的規則 2. 柱體的命名與特性 3. 柱體的展開圖 4. 錐體的命名與特性 5. 錐體的展開圖
255 With the aid of (1)the Gabor transform (or the Gabor-Wigner transform) (2)horizontal shifting and vertical shifting, dilation, tilting, and rotation.
Sep.2008DISP Time-Frequency Analysis 時頻分析  Speaker: Wen-Fu Wang 王文阜  Advisor: Jian-Jiun Ding 丁建均 教授   Graduate.
A Novel Technique for Image Authentication in Frequency Domain using Discrete Fourier Transformation Technique (IAFDDFTT) Malaysian Journal of Computer.
189 VII. Motions on the Time-Frequency Distribution (1) Horizontal shifting (2) Vertical shifting (3) Dilation (4) Shearing (5) Generalized Shearing (6)
FrFT and Time-Frequency Distribution 分數傅立葉轉換與時頻分析 Guo-Cyuan Guo 郭國銓 指導教授 :Jian Jiun Ding 丁建均 Institute of Communications Engineering National Taiwan University.
The Fractional Fourier Transform and Its Applications Presenter: Pao-Yen Lin Research Advisor: Jian-Jiun Ding, Ph. D. Assistant professor Digital Image.
1 丁建均 (Jian-Jiun Ding) National Taiwan University 辦公室:明達館 723 室, 實驗室:明達館 531 室 聯絡電話: (02) Major : Digital Signal Processing Digital Image Processing.
An Introduction to Time-Frequency Analysis Speaker: Po-Hong Wu Advisor: Jian-Jung Ding Digital Image and Signal Processing Lab GICE, National Taiwan University.
153 VI. Other Time Frequency Distributions Main Reference [Ref] S. Qian and D. Chen, Joint Time-Frequency Analysis: Methods and Applications, Chap. 6,
VIII. Motions on the Time-Frequency Distribution
VII. Other Time Frequency Distributions (II)
VI. Other Time Frequency Distributions
Applications of Time-Frequency Analysis
The Fractional Fourier Transform and Its Applications
Presentation transcript:

225 (1) Finding Instantaneous Frequency (2) Signal Decomposition (3) Filter Design (4) Sampling Theory (5) Modulation and Multiplexing (6) Electromagnetic Wave Propagation (7) Optics (8) Radar System Analysis (9) Random Process Analysis (10) Music Signal Analysis (11) Biomedical Engineering (12) Accelerometer Signal Analysis (13) Acoustics (14) Spread Spectrum Analysis (15) System Modeling (16) Image Processing (17) Economic Data Analysis (18) Signal Representation (19) Data Compression (20) Seismology (21) Geology (22) Astronomy (23) Climate Analysis (24) Oceanography XIII. Applications of Time–Frequency Analysis

Signal Decomposition and Filter Design Signal Decomposition: Decompose a signal into several components. Filter: Remove the undesired component of a signal Decomposing in the time domain t-axis criterion component 1 component 2 t0t0

227 Decomposing in the frequency domain  Sometimes, signal and noise are separable in the time domain  without any transform  Sometimes,signal and noise are separable in the frequency domain  using the FT (conventional filter)  If signal and noise are not separable in both the time and the frequency domains  using the fractional Fourier transform and the time-frequency analysis f-axis

228 x(t) = triangular signal + chirp noise exp[j 0.25(t  4.12) 2 ]  =

229 以時頻分析的觀點, criterion in the time domain 相當於 cutoff line perpendicular to t-axis 以時頻分析的觀點, criterion in the frequency domain 相當於 cutoff line perpendicular to f-axis t0t0 = t-axis f-axis t0t0 cutoff line f0f0 f-axis = f0f0 t-axis f-axis cutoff line page 226

230 If x(t) = 0 for t T 2 for t T 2 (cutoff lines perpendicular to t-axis) If X( f ) = FT[x(t)] = 0 for f F 2 for f F 2 (cutoff lines parallel to t-axis) What are the cutoff lines with other directions? Decomposing in the time-frequency distribution with the aid of the FRFT, the LCT, or the Fresnel transform

231  Filter designed by the fractional Fourier transform means the fractional Fourier transform: f-axis Signal noise t-axis FRFT  FRFT  noiseSignal cutoff line Signal cutoff line noise 比較:  u u0u0

232  Effect of the filter designed by the fractional Fourier transform (FRFT): Placing a cutoff line in the direction of (  sin , cos  )  = 0  = 0.15   = 0.35   = 0.5  (time domain) (FT)

233 S(u): Step function (1)  由 cutoff line 和 f-axis 的夾角決定 (2) u 0 等於 cutoff line 距離原點的距離 ( 注意正負號 )

234. t-axis desired part undesired part cutoff line undesired part (t 1, 0) (t 0, 0) cutoff line f-axis (0, f 1 ) S. C. Pei and J. J. Ding, “Relations between fractional operations and time- frequency distributions, and their applications,” IEEE Trans. Signal Processing, vol. 49, issue 8, pp , Aug

235  The Fourier transform is suitable to filter out the noise that is a combination of sinusoid functions exp(jn 1 t).  The fractional Fourier transform (FRFT) is suitable to filter out the noise that is a combination of higher order exponential functions exp[j(n k t k + n k-1 t k-1 + n k-2 t k-2 + ……. + n 2 t 2 + n 1 t)] For example: chirp function exp(jn 2 t 2 )  With the FRFT, many noises that cannot be removed by the FT will be filtered out successfully.

236 (a) Signal s(t) (b) f(t) = s(t) + noise (c) WDF of s(t) Example (I)

237 (d) WDF of f(t) (e) GT of s(t) (f) GT of f(t) GT: Gabor transform,WDF: Wigner distribution function horizon: t-axis, vertical:  -axis

238 (g) GWT of f(t) (h) Cutoff lines on GT (i) Cutoff lines on GWT GWT: Gabor-Wigner transform 根據斜率來決定 FrFT 的 order

239 (performing the FRFT) (j) performing the FRFT and calculate the GWT (k) High pass filter (l) GWT after filter (m) recovered signal (n) recovered signal (green) and the original signal (blue)

240 Signal + (a) Input signal (b) Signal + noise (c) WDF of (b) Example (II) (d) Gabor transform of (b) (e) GWT of (b) (f) Recovered signal

241 [Important Theory]: Using the FT can only filter the noises that do not overlap with the signals in the frequency domain (1-D) In contrast, using the FRFT can filter the noises that do not overlap with the signals on the time-frequency plane (2-D)

242 思考: (1) 哪些 time-frequency distribution 比較適合處理 filter 或 signal decomposition 的問題? 思考: (2) Cutoff lines 有可能是非直線的嗎?

243 [Ref] Z. Zalevsky and D. Mendlovic, “Fractional Wiener filter,” Appl. Opt., vol. 35, no. 20, pp , July [Ref] M. A. Kutay, H. M. Ozaktas, O. Arikan, and L. Onural, “Optimal filter in fractional Fourier domains,” IEEE Trans. Signal Processing, vol. 45, no. 5, pp , May [Ref] B. Barshan, M. A. Kutay, H. M. Ozaktas, “Optimal filters with linear canonical transformations,” Opt. Commun., vol. 135, pp , [Ref] H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing, New York, John Wiley & Sons, [Ref] S. C. Pei and J. J. Ding, “Relations between Gabor transforms and fractional Fourier transforms and their applications for signal processing,” IEEE Trans. Signal Processing, vol. 55, no. 10, pp , Oct

244 Number of sampling points == Area of time frequency distribution + The number of extra parameters  How to make the area of time-frequency smaller? (1) Divide into several components. (2) Use chirp multiplications, chirp convolutions, fractional Fourier transforms, or linear canonical transforms to reduce the area. [Ref] X. G. Xia, “On bandlimited signals with fractional Fourier transform,” IEEE Signal Processing Letters, vol. 3, no. 3, pp , March [Ref] J. J. Ding, S. C. Pei, and T. Y. Ko, “Higher order modulation and the efficient sampling algorithm for time variant signal,” European Signal Processing Conference, pp , Bucharest, Romania, Aug Sampling Theory

245 shearing Area

246 Step 1 Separate the components Step 2 Use shearing or rotation to minimize the “area” to each component Step 3 Use the conventional sampling theory to sample each components + (a) (b)

247 傳統的取樣方式 新的取樣方式 k = 1, 2, …, K

248 嚴格來說,沒有一個信號的 時頻分佈的「面積」是有限的。 Theorem: 實際上,以「面積」來討論取樣點數,是犧牲了一些精確度。 If x(t) is time limited (x(t) = 0 for t t 2 ) then it is impossible to be frequency limited If x(t) is frequency limited (X(f) = 0 for f f 2 ) then it is impossible to be time limited 但是我們可以選一個 “threshold”  時頻分析 |X (t, f)| >  或 的區域的面積是有限的

249 只取 t  [t 1, t 2 ] and f  [f 1, f 2 ] 犧牲的能量所佔的比例 X 1 (f) = FT[x 1 (t)], x 1 (t) = x(t) for t  [t 1, t 2 ], x 1 (t) = 0 otherwise  For the Wigner distribution function (WDF) = energy of x(t).

250 f 2 f1 f1 t2 t2 t1t1 f-axis t-axis A B D C CDBA

251 附錄八 Time-Frequency Analysis 理論發展年表 AD 1785 The Laplace transform was invented AD 1812 The Fourier transform was invented AD 1822 The work of the Fourier transform was published AD 1910 The Haar Transform was proposed AD 1927 Heisenberg discovered the uncertainty principle AD 1929 The fractional Fourier transform was invented by Wiener AD 1932 The Wigner distribution function was proposed AD 1946 The short-time Fourier transform and the Gabor transform was proposed. In the same year, the computer was invented AD 1961 Slepian and Pollak found the prolate spheroidal wave function AD 1965 The Cooley-Tukey algorithm (FFT) was developed 註:沒列出發明者的,指的是 transform / distribution 的名稱和發明者 的名字相同

252 AD 1966 Cohen’s class distribution was invented AD 1970s VLSI was developed AD 1971 Moshinsky and Quesne proposed the linear canonical transform AD 1980 The fractional Fourier transform was re-invented by Namias AD 1981 Morlet proposed the wavelet transform AD 1982 The relations between the random process and the Wigner distribution function was found by Martin and Flandrin AD 1988 Mallat and Meyer proposed the multiresolution structure of the wavelet transform; In the same year, Daubechies proposed the compact support orthogonal wavelet AD 1989 The Choi-Williams distribution was proposed; In the same year, Mallat proposed the fast wavelet transform 註:沒列出發明者的,指的是 transform / distribution 的名稱和發明者 的名字相同

253 AD 1990 The cone-Shape distribution was proposed by Zhao, Atlas, and Marks AD 1990s The discrete wavelet transform was widely used in image processing AD 1993 Mallat and Zhang proposed the matching pursuit; In the same year, the rotation relation between the WDF and the fractional Fourier transform was found by Lohmann AD 1994 The applications of the fractional Fourier transform in signal processing were found by Almeida, Ozaktas, Wolf, Lohmann, and Pei; Boashash and O’Shea developed polynomial Wigner-Ville distributions AD 1995 L. J. Stankovic, S. Stankovic, and Fakultet proposed the pseudo Wigner distribution AD 1996 Stockwell, Mansinha, and Lowe proposed the S transform AD 1998 N. E. Huang proposed the Hilbert-Huang transform AD 2000 The standard of JPEG 2000 was published by ISO The curvelet was developed by Donoho and Candes

254 時頻分析理論未來的發展,還看各位同學們大顯身手 AD 2000s The applications of the Hilbert Huang transform in signal processing, climate analysis, geology, economics, and speech were developed AD 2002 The bandlet was developed by Mallet and Peyre; Stankovic proposed the time frequency distribution with complex arguments AD 2003 Pinnegar and Mansinha proposed the general form of the S transform AD 2005 The contourlet was developed by Do and M. Vetterli; The shearlet was developed by Kutyniok and Labate AD 2007 The Gabor-Wigner transform was proposed by Pei and Ding AD 2007~Accelerometer signal analysis becomes a new application of time- frequency analysis AD 2012 Based on the fast development of hardware and software, the time- frequency distribution of a signal with 10 6 sampling points can be calculated within 1 second in PC.