Lecture 07 DC and AC Load Line

Slides:



Advertisements
Similar presentations
Recommended Books Robert Boylestad and Louis Nashelsky, “Electronic Devices and Circuit Theory”, Prentice Hall, 7th Edition or Latest. Thomas L. Floyd,
Advertisements

SMALL SIGNAL BJT AMPLIFIER
Bipolar Junction Transistor Amplifier
Recall Lecture 13 Biasing of BJT Applications of BJT
Lecture 8 Power Amplifier (Class A)
Class-A and Class-B Amplifiers
Lecture no 2 to 5 THE BASIC BJT AMPLIFIER CONFIGURATIONS
Electronics Principles & Applications Sixth Edition Chapter 6 Introduction to Small-Signal Amplifiers (student version) ©2003 Glencoe/McGraw-Hill Charles.
Chapter 13 Small-Signal Modeling and Linear Amplification
Recall Last Lecture Biasing of BJT Applications of BJT
Electrical, Electronic and Digital Principles (EEDP)
Chapter 7 DC Biasing Circuits
Transistor Biasing What is meant by biasing the transistor?
Transistors They are unidirectional current carrying devices with capability to control the current flowing through them The switch current can be controlled.
ELECTRONIC CIRCUITS- I
Bipolar Junction Transistors
Dr. Nasim Zafar Electronics 1: EEE 231 Fall Semester – 2012 COMSATS Institute of Information Technology Virtual campus Islamabad.
Chapter 4 DC Biasing – Bipolar Junction Transistors (BJTs)
POWER AMPLIFIER (Additional Lecture Notes)
Electronic Devices and Circuit Theory
BJT Fixed Bias ENGI 242 ELEC 222. January 2004ENGI 242/ELEC 2222 BJT Biasing 1 For Fixed Bias Configuration: Draw Equivalent Input circuit Draw Equivalent.
Chapter 2 Operational Amplifier Circuits
Part B-3 AMPLIFIERS: Small signal low frequency transistor amplifier circuits: h-parameter representation of a transistor, Analysis of single stage transistor.
COMSATS Institute of Information Technology Virtual campus Islamabad
Voltage Divider Bias ENGI 242 ELEC February 2005ENGI 242/ELEC 2222 BJT Biasing 3 For the Voltage Divider Bias Configurations Draw Equivalent Input.
Transistor Amplifiers
Chapter 6:BJT Amplifiers
ELEC 121 January 2004 BJT Fixed Bias ELEC 121 Fixed Bias.
BJT Common-Emitter Amplifier By: Syahrul Ashikin School of Electrical System Engineering.
Voltage Divider Bias ELEC 121. January 2004ELEC 1212 BJT Biasing 3 For the Voltage Divider Bias Configurations Draw Equivalent Input circuit Draw Equivalent.
Chapter 4 DC Biasing–BJTs. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey All rights reserved. Electronic Devices and.
Chapter 5 Transistor Bias Circuits
© 2013 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill 6-1 Electronics Principles & Applications Eighth Edition Chapter 6 Introduction.
Electronics Principles & Applications Fifth Edition Chapter 6 Introduction to Small-Signal Amplifiers ©1999 Glencoe/McGraw-Hill Charles A. Schuler.
© 2013 The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill 6-1 Electronics Principles & Applications Eighth Edition Chapter 6 Introduction.
Dr. Nasim Zafar Electronics 1 - EEE 231 Fall Semester – 2012 COMSATS Institute of Information Technology Virtual campus Islamabad.
EKT104 ANALOG ELECTRONIC CIRCUITS [LITAR ELEKTRONIK ANALOG] BASIC BJT AMPLIFIER (PART II) DR NIK ADILAH HANIN BINTI ZAHRI
ANALOG ELECTRONIC CIRCUITS 1
BJT amplifier & small-signal concept
Chapter 5 Transistor Bias Circuits. Objectives  Discuss the concept of dc biasing of a transistor for linear operation  Analyze voltage-divider bias,
Transistor Circuit DC Bias Part 1 ENGI 242. February 2003ENGI 2422 DC Biasing Circuits Fixed-Bias Circuit Emitter-Stabilized Bias Circuit Collector-Emitter.
1 TRANSISTOR AMPLIFIER CONFIGURATION -BJT Common-Emitter Amplifier- By: Syahrul Ashikin Azmi School of Electrical System Engineering.
TRANSISTOR AMPLIFIER CONFIGURATION -BJT Common-Emitter Amplifier-
Recall Last Lecture Introduction to BJT 3 modes of operation Cut-off Active Saturation Active mode operation of NPN.
BJT Emitter Stabilized Bias
Chapter 5 Transistor Bias Circuits
MOSFET DC circuit analysis Common-Source Circuit
Chapter 3 – Transistor Amplifiers – Part 1 Bipolar Transistor Amplifiers.
Chapter 4 DC Biasing–BJTs. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey All rights reserved. Electronic Devices and.
1 2. Design of BJT amplifiers 2.1 Types of BJT amplifiersTypes of BJT amplifiers 2.2 BJT amplifier biasing designBJT amplifier biasing design 2.3 BJT Optimum.
EMT 112 / 4 ANALOGUE ELECTRONICS Lecture I, II & III Classification of Power Amplifiers 1200 – 1400 DKQ – 1100 DKP 2.
Prepared by: Garima Devpriya ( ) Jamila Kharodawala ( ) Megha Sharma ( ) ELECTRONICS DEVICES AND CIRCUITS G.H.Patel.
Load Line & BJT Biasing. DC Biasing To establish a constant dc collector current in the BJT. Biasing is required to operate the transistor in the linear.
BJT Bipolar Junction Transistors (BJT) Presented by D.Satishkumar Asst. Professor, Electrical & Electronics Engineering
Lecture 10:Load Line & BJT Biasing CSE251. DC Biasing To establish a constant dc collector current in the BJT. Biasing is required to operate the transistor.
Chapter 5 Transistor Bias Circuits. Objectives  Discuss the concept of dc biasing of a transistor for linear operation  Analyze voltage-divider bias,
ITM UNIVERSE,VADODARA ELECTRONIC DEVICES & CIRCUITS TOPIC NAME TRANSISTOR BIASING (DC ANALYSIS) PREPARED BY: NAME: Dilsha Dharmajan Electronics & communication.
SUB.TEACHER:- MR.PRAVIN BARAD NAME:-SAGAR KUMBHANI ( ) -VIKRAMSINH JADAV( ) -PARECHA TUSHAR( ) TOPIC:-LINEAR AMPLIFIER(BJT.
MOSFET Basic FET Amplifiers The MOSFET Amplifier
Electronics Technology Fundamentals Chapter 19 Bipolar Junction Transistor Operation and Biasing.
Chapter 4 DC Biasing–BJTs. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey All rights reserved. Electronic Devices and.
DC Biasing - BJTs Chapter 4 Boylestad Electronic Devices and Circuit Theory.
Chapter 5 Transistor bias circuits Ir. Dr. Rosemizi Abd Rahim 1 Ref: Electronic Devices and Circuit Theory, 10/e, Robert L. Boylestad and Louis Nashelsky.
Gandhinagar Institute of Technology
Lecture 07 DC and AC Load Line
DC and AC Load Line DC biasing circuits DC and AC equivalent circuit
Principles & Applications Small-Signal Amplifiers
Chapter 5 Transistor Bias Circuits
ChapTer FoUr DC BIASING - BIPOLAR JUNCTION TRANSISTORS (BJTs)
DC Biasing Circuits.
Presentation transcript:

Lecture 07 DC and AC Load Line DC biasing circuits DC and AC equivalent circuit Q-point (Static operation point) DC and AC load line Saturation Cutoff Condition Compliance Ref:080314HKN EE3110 DC and AC Load Line

Book Reference Electronic Devices and Circuit Theory by Robert Boylestad & Louis Nashelsky ( Prentice Hall ) Electronic Devices by Thomas L. Floyd ( Prentice Hall ) Ref:080314HKN EE3110 DC and AC Load Line

DC Biasing Circuits The ac operation of an amplifier depends on the initial dc values of IB, IC, and VCE. By varying IB around an initial dc value, IC and VCE are made to vary around their initial dc values. DC biasing is a static operation since it deals with setting a fixed (steady) level of current (through the device) with a desired fixed voltage drop across the device. Ref:080314HKN EE3110 DC and AC Load Line

Purpose of the DC biasing circuit To turn the device “ON” To place it in operation in the region of its characteristic where the device operates most linearly, i.e. to set up the initial dc values of IB, IC, and VCE Ref:080314HKN EE3110 DC and AC Load Line

Voltage-Divider Bias The voltage – divider (or potentiometer) bias circuit is by far the most commonly used. RB1, RB2  voltage-divider to set the value of VB , IB C3  to short circuit ac signals to ground, while not effect the DC operating (or biasing) of a circuit (RE  stabilizes the ac signals)  Bypass Capacitor Ref:080314HKN EE3110 DC and AC Load Line

Graphical DC Bias Analysis Ref:080314HKN EE3110 DC and AC Load Line

DC Load Line The straight line is know as the DC load line Its significance is that regardless of the behavior of the transistor, the collector current IC and the collector-emitter voltage VCE must always lie on the load line, depends ONLY on the VCC, RC and RE (i.e. The dc load line is a graph that represents all the possible combinations of IC and VCE for a given amplifier. For every possible value of IC, and amplifier will have a corresponding value of VCE.) It must be true at the same time as the transistor characteristic. Solve two condition using simultaneous equation  graphically  Q-point !! What is IC(sat) and VCE(off) ? Ref:080314HKN EE3110 DC and AC Load Line

Q-Point (Static Operation Point) When a transistor does not have an ac input, it will have specific dc values of IC and VCE. These values correspond to a specific point on the dc load line. This point is called the Q-point. The letter Q corresponds to the word (Latent) quiescent, meaning at rest. A quiescent amplifier is one that has no ac signal applied and therefore has constant dc values of IC and VCE. Ref:080314HKN EE3110 DC and AC Load Line

Q-Point (Static Operation Point) The intersection of the dc bias value of IB with the dc load line determines the Q-point. It is desirable to have the Q-point centered on the load line. Why? When a circuit is designed to have a centered Q-point, the amplifier is said to be midpoint biased. Midpoint biasing allows optimum ac operation of the amplifier. Ref:080314HKN EE3110 DC and AC Load Line

DC Biasing + AC signal When an ac signal is applied to the base of the transistor, IC and VCE will both vary around their Q-point values. When the Q-point is centered, IC and VCE can both make the maximum possible transitions above and below their initial dc values. When the Q-point is above the center on the load line, the input signal may cause the transistor to saturate. When this happens, a part of the output signal will be clipped off. When the Q-point is below midpoint on the load line, the input signal may cause the transistor to cutoff. This can also cause a portion of the output signal to be clipped. Ref:080314HKN EE3110 DC and AC Load Line

DC Biasing + AC signal Ref:080314HKN EE3110 DC and AC Load Line

DC and AC Equivalent Circuits Bias Circuit DC equivalent circuit AC equivalent circuit Ref:080314HKN EE3110 DC and AC Load Line

AC Load Line The ac load line of a given amplifier will not follow the plot of the dc load line. This is due to the dc load of an amplifier is different from the ac load. Ref:080314HKN EE3110 DC and AC Load Line

AC Load Line What does the ac load line tell you? The ac load line is used to tell you the maximum possible output voltage swing for a given common-emitter amplifier. In other words, the ac load line will tell you the maximum possible peak-to-peak output voltage (Vpp ) from a given amplifier. This maximum Vpp is referred to as the compliance of the amplifier. (AC Saturation Current Ic(sat) , AC Cutoff Voltage VCE(off) ) Ref:080314HKN EE3110 DC and AC Load Line

AC Saturation Current and AC Cutoff Voltage Ref:080314HKN EE3110 DC and AC Load Line

Amplifier Compliance The ac load line is used to tell the maximum possible output voltage swing for a given common-emitter amplifier. In another words, the ac load line will tell the maximum possible peak-to-peak output voltage (VPP) from a given amplifier. This maximum VPP is referred to as the compliance of the amplifier. The compliance of an amplifier is found by determine the maximum possible of IC and VCE from their respective values of ICQ and VCEQ. Ref:080314HKN EE3110 DC and AC Load Line

Maximum Possible Compliance Ref:080314HKN EE3110 DC and AC Load Line

Compliance The maximum possible transition for VCE is equal to the difference between VCE(off) and VCEQ. Since this transition is equal to ICQrC, the maximum peak output voltage from the amplifier is equal to ICQrC. Two times this value will give the maximum peak-to-peak transition of the output voltage: VPP = the output compliance, in peak-to-peak voltage ICQ = the quiescent value of IC rC = the ac load resistance in the circuit VPP = 2ICQrC (A) Ref:080314HKN EE3110 DC and AC Load Line

Compliance When IC = IC(sat)­, VCE is ideally equal to 0V. When I­C = ICQ, VCE is at VCEQ. Note that when IC makes its maximum possible transition (from ICQ to IC(sat)), the output voltage changes by an amount equal to VCEQ. Thus the maximum peak-to-peak transition would be equal to twice this value: Equation (A) sets the limit in terms of VCE(off). If the value obtained by this equation is exceed, the output voltage will try to exceed VCE(off), which is not possible. This is called cutoff clipping, because the output voltage is clipped off at the value of VCE(off). Equation (B) sets of the limit in terms of IC(sat). If the value obtained by this equation is exceed, the output will experience saturation clipping. (B) VPP = 2VCEQ Ref:080314HKN EE3110 DC and AC Load Line

Cutoff and Saturation Clipping When determining the output compliance for a given amplifier, solve both equation (A) and (B). The lower of the two results is the compliance of the amplifier. Ref:080314HKN EE3110 DC and AC Load Line

Example For the voltage-divider bias amplifier shown in the figure, what is the ac and dc load line. Determine the maximum output compliance. Ref:080314HKN EE3110 DC and AC Load Line