DC Response DC Response: Vout vs. Vin for a gate Ex: Inverter

Slides:



Advertisements
Similar presentations
Transistor nMOS Q channel = CV C = C g =  ox WL/t ox = C ox WL V = V gc – V t = (V gs – V ds /2) – V t v =  E  (mobility) E = V ds /L Time for carrier.
Advertisements

DC Characteristics of a CMOS Inverter
Lecture 5: DC & Transient Response
Courtesy : Prof Andrew Mason CMOS Inverter: DC Analysis By Dr.S.Rajaram, Thiagarajar College of Engineering.
(Neil weste p: ).  A MOS transistor is a majority-carrier device, in which the current in a conducting channel between the source and the drain.
S. RossEECS 40 Spring 2003 Lecture 21 CMOS INVERTER CMOS means Complementary MOS: NMOS and PMOS working together in a circuit D S V DD (Logic 1) D S V.
Introduction to CMOS VLSI Design Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004.
CMOS Transistor and Circuits
Introduction to CMOS VLSI Design Lecture 5 CMOS Transistor Theory
VLSI Design CMOS Transistor Theory. EE 447 VLSI Design 3: CMOS Transistor Theory2 Outline Introduction MOS Capacitor nMOS I-V Characteristics pMOS I-V.
S. RossEECS 40 Spring 2003 Lecture 22 Inside the CMOS inverter, no I D current flows through transistors when input is logic 1 or logic 0, because the.
Design and Implementation of VLSI Systems (EN0160) Prof. Sherief Reda Division of Engineering, Brown University Spring 2007 [sources: Weste/Addison Wesley.
DC Characteristics of a CMOS Inverter A complementary CMOS inverter consists of a p-type and an n-type device connected in series. The DC transfer characteristics.
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis Fall EE4800 CMOS Digital IC Design & Analysis Lecture 7 Midterm Review Zhuo Feng.
Lecture #26 Gate delays, MOS logic
Introduction to CMOS VLSI Design Lecture 4: DC & Transient Response
Introduction to CMOS VLSI Design Lecture 4: DC & Transient Response Credits: David Harris Harvey Mudd College (Material taken/adapted from Harris’ lecture.
CMOS Digital Integrated Circuits 1 Lec 7 CMOS Inverters: Dynamic Analysis and Design.
Lecture 21 Today we will Revisit the CMOS inverter, concentrating on logic 0 and logic 1 inputs Come up with an easy model for MOS transistors involved.
Lecture #24 Gates to circuits
Introduction to CMOS VLSI Design Lecture 3: CMOS Transistor Theory
CSCE 612: VLSI System Design Instructor: Jason D. Bakos.
Introduction to CMOS VLSI Design Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004 from CMOS VLSI Design A Circuits and Systems.
Design and Implementation of VLSI Systems (EN0160) Prof. Sherief Reda Division of Engineering, Brown University Spring 2007 [sources: Weste/Addison Wesley.
11/3/2004EE 42 fall 2004 lecture 271 Lecture #27 MOS LAST TIME: NMOS Electrical Model – Describing the I-V Characteristics – Evaluating the effective resistance.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 22: Material Review Prof. Sherief Reda Division of Engineering, Brown University.
Outline Noise Margins Transient Analysis Delay Estimation
DC and transient responses Lezione 3
Introduction to CMOS VLSI Design Circuit Families.
S. Reda VLSI Design Design and Implementation of VLSI Systems (EN1600) lecture09 Prof. Sherief Reda Division of Engineering, Brown University Spring 2008.
CMOS VLSI Design4: DC and Transient ResponseSlide 1 EE466: VLSI Design Lecture 05: DC and transient response – CMOS Inverters.
EE4800 CMOS Digital IC Design & Analysis
Lecture 2: CMOS Transistor Theory
Introduction to CMOS VLSI Design Lecture 4: DC & Transient Response Greco/Cin-UFPE (Material taken/adapted from Harris’ lecture notes)
EE 447 VLSI Design 4: DC and Transient Response1 VLSI Design DC & Transient Response.
VLSI design Lecture 1: MOS Transistor Theory. CMOS VLSI Design3: CMOS Transistor TheorySlide 2 Outline  Introduction  MOS Capacitor  nMOS I-V Characteristics.
Transistor Characteristics EMT 251. Outline Introduction MOS Capacitor nMOS I-V Characteristics (ideal) pMOS I-V Characteristics (ideal)
The CMOS Inverter Slides adapted from:
MOS Inverter: Static Characteristics
Lecture 3: CMOS Transistor Theory
1 Delay Estimation Most digital designs have multiple data paths some of which are not critical. The critical path is defined as the path the offers the.
Mary Jane Irwin ( ) Modified by Dr. George Engel (SIUE)
Mary Jane Irwin ( ) CSE477 VLSI Digital Circuits Fall 2002 Lecture 04: CMOS Inverter (static view) Mary Jane.
Ch 10 MOSFETs and MOS Digital Circuits
MOS Transistors The gate material of Metal Oxide Semiconductor Field Effect Transistors was original made of metal hence the name. Present day devices’
Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction.
1 Slides adapted from: N. Weste, D. Harris, CMOS VLSI Design, © Addison-Wesley, 3/e, 2004 MOS Transistor Theory.
Chapter 07 Electronic Analysis of CMOS Logic Gates
Device Characterization ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May April 1, 2004.
Outline Introduction CMOS devices CMOS technology CMOS logic structures CMOS sequential circuits CMOS regular structures.
Introduction to CMOS VLSI Design MOS devices: static and dynamic behavior.
Digital Integrated Circuits A Design Perspective
11. 9/15 2 Figure A 2 M+N -bit memory chip organized as an array of 2 M rows  2 N columns. Memory SRAM organization organized as an array of 2.
CMOS VLSI Design CMOS Transistor Theory
Introduction to CMOS VLSI Design Lecture 4: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2007.
EE210 Digital Electronics Class Lecture 10 April 08, 2009
Chapter 2 MOS Transistor Theory. NMOS Operation Region.
Lecture 20 Today we will Look at why our NMOS and PMOS inverters might not be the best inverter designs Introduce the CMOS inverter Analyze how the CMOS.
Solid-State Devices & Circuits
Introduction to CMOS VLSI Design CMOS Transistor Theory
7-1 Integrated Microsystems Lab. EE372 VLSI SYSTEM DESIGNE. Yoon MOS Inverter — All essential features of MOS logic gates DC and transient characteristics.
Wujie Wen, Assistant Professor Department of ECE
CMOS VLSI Design Lecture 4: DC & Transient Response Younglok Kim Sogang University Fall 2006.
VLSI System Design DC & Transient Response
DC & Transient Response
Introduction to CMOS VLSI Design Lecture 5: DC & Transient Response
UNIT-II Stick Diagrams
CP-406 VLSI System Design CMOS Transistor Theory
Lecture 5: DC & Transient Response
Introduction to CMOS VLSI Design Lecture 4: DC & Transient Response
Presentation transcript:

CMOS VLSI Design DC Transfer Characteristics and Switch –level RC delay Models

DC Response DC Response: Vout vs. Vin for a gate Ex: Inverter When Vin = 0 -> Vout = VDD When Vin = VDD -> Vout = 0 In between, Vout depends on transistor size and current By KCL, must settle such that Idsn = |Idsp| We could solve equations But graphical solution gives more insight

Transistor Operation Current depends on region of transistor behavior For what Vin and Vout are nMOS and pMOS in Cutoff? Linear? Saturation?

nMOS Operation Cutoff Linear Saturated Vgsn < Vgsn > Vdsn <

nMOS Operation Cutoff Linear Saturated Vgsn < Vtn Vgsn > Vtn Vdsn < Vgsn – Vtn Vdsn > Vgsn – Vtn

nMOS Operation Cutoff Linear Saturated Vgsn < Vtn Vgsn > Vtn Vdsn < Vgsn – Vtn Vdsn > Vgsn – Vtn Vgsn = Vin Vdsn = Vout

nMOS Operation Cutoff Linear Saturated Vgsn < Vtn Vin < Vtn Vdsn < Vgsn – Vtn Vout < Vin - Vtn Vdsn > Vgsn – Vtn Vout > Vin - Vtn Vgsn = Vin Vdsn = Vout

pMOS Operation Cutoff Linear Saturated Vgsp > Vgsp < Vdsp >

pMOS Operation Cutoff Linear Saturated Vgsp > Vtp Vgsp < Vtp Vdsp > Vgsp – Vtp Vdsp < Vgsp – Vtp

pMOS Operation Cutoff Linear Saturated Vgsp > Vtp Vgsp < Vtp Vdsp > Vgsp – Vtp Vdsp < Vgsp – Vtp Vgsp = Vin - VDD Vdsp = Vout - VDD Vtp < 0

pMOS Operation Cutoff Linear Saturated Vgsp > Vtp Vin > VDD + Vtp Vgsp < Vtp Vin < VDD + Vtp Vdsp > Vgsp – Vtp Vout > Vin - Vtp Vdsp < Vgsp – Vtp Vout < Vin - Vtp Vgsp = Vin - VDD Vdsp = Vout - VDD Vtp < 0

I-V Characteristics Make pMOS is wider than nMOS such that bn = bp

Current vs. Vout, Vin plot absolute value of pMOS

Load Line Analysis For a given Vin: Plot Idsn, Idsp vs. Vout Vout must be where |currents| are equal in

Load Line Analysis Vin = 0

Load Line Analysis Vin = 0.2VDD

Load Line Analysis Vin = 0.4VDD

Load Line Analysis Vin = 0.6VDD

Load Line Analysis Vin = 0.8VDD

Load Line Analysis Vin = VDD

Load Line Summary

DC Transfer Curve Transcribe points onto Vin vs. Vout plot

Operating Regions Revisit transistor operating regions Region nMOS pMOS A B C D E

Operating Regions Revisit transistor operating regions Region nMOS pMOS A Cutoff Linear B Saturation C D E

Beta Ratio If bp / bn  1, switching point will move from VDD/2 If bp / bn < 1, the inverter is LO-skewed If bp / bn > 1, the inverter is HI-skewed

Noise Margins How much noise can a gate input see before it does not recognize the input? NMH= VOH-VIH NML = VIL - VOL

Logic Levels To maximize noise margins, select logic levels at

Logic Levels To maximize noise margins, select logic levels at unity gain point of DC transfer characteristic

Pass Transistors We have assumed source is grounded What if source > 0? e.g. pass transistor passing VDD

Pass Transistors We have assumed source is grounded What if source > 0? e.g. pass transistor passing VDD Vg = VDD If Vs > VDD-Vt, Vgs < Vt Hence transistor would turn itself off nMOS pass transistors pull no higher than VDD-Vtn Called a degraded “1” Approach degraded value slowly (low Ids) pMOS pass transistors pull no lower than Vtp

Pass Transistor Ckts

Pass Transistor Ckts

Tristate Inverter Why (d) is a bad design? If EN = 0, Y is supposed to be float, but if A changes, charge at internal node may disturb node Y. more in section 6.3.4)

Effective Resistance Shockley models have limited value Not accurate enough for modern transistors Too complicated for much hand analysis Simplification: treat transistor as resistor Replace Ids(Vds, Vgs) with effective resistance R Ids = Vds/R R averaged across switching of digital gate Too inaccurate to predict current at any given time But good enough to predict RC delay

RC Delay Model Use equivalent circuits for MOS transistors Ideal switch + capacitance and ON resistance Unit nMOS has resistance R, capacitance C Unit pMOS has resistance 2R, capacitance C Capacitance proportional to width Resistance inversely proportional to width

A nMOS transistor of unit size: minimum length and minimum contacted diffusion width, size = 1 means that W = 4 , L = 2 , W/L = 2 A nMOS transistor size = k

Unit nMOS has resistance R, capacitance C Unit pMOS has resistance 2R, capacitance C

RC Values Capacitance C = Cg = Cs = Cd = 2 fF/mm of gate width Values similar across many processes Resistance R  6 KW/mm in 0.6um process Improves with shorter channel lengths Unit transistors May refer to minimum contacted device (4/2 l) Or maybe 1 mm wide device Doesn’t matter as long as you are consistent

Inverter Delay Estimate Estimate the delay of a fanout-of-1 inverter

Inverter Delay Estimate Estimate the delay of a fanout-of-1 inverter

Inverter Delay Estimate Estimate the delay of a fanout-of-1 inverter

Inverter Delay Estimate Estimate the delay of a fanout-of-1 inverter d = 6RC