Ch. 5 – Adversarial Search Supplemental slides for CSE 327 Prof. Jeff Heflin.

Slides:



Advertisements
Similar presentations
Supplemental Figure 1 A No. at risk T T T
Advertisements

This lecture topic: Game-Playing & Adversarial Search
Ch. 19 – Knowledge in Learning Supplemental slides for CSE 327 Prof. Jeff Heflin.
Chess Game By\ Amr Eledkawy Ibrahim Shawky Ali Abdelmoaty Amany Hussam Amel Mostafa.
Ch. 2 – Intelligent Agents Supplemental slides for CSE 327 Prof. Jeff Heflin.
Ch. 18 – Learning Supplemental slides for CSE 327 Prof. Jeff Heflin.
Games with Chance 2012/04/25 1. Nondeterministic Games: Backgammon White moves clockwise toward 25. Black moves counterclockwise toward 0. A piece can.
Ch. 8 – First Order Logic Supplemental slides for CSE 327 Prof. Jeff Heflin.
1 Heuristic Search 4 4.0Introduction 4.1An Algorithm for Heuristic Search 4.2Admissibility, Monotonicity, and Informedness 4.3Using Heuristics in Games.
Decision Making Under Uncertainty Russell and Norvig: ch 16, 17 CMSC421 – Fall 2005.
Max Min Max Min Starting node and labels Figure 4.15 (pp. 148) MiniMax Search.
Game Tree Search based on Russ Greiner and Jean-Claude Latombe’s notes.
Adversarial Search: Game Playing Reading: Chess paper.
Decision Making Under Uncertainty Russell and Norvig: ch 16, 17 CMSC421 – Fall 2003 material from Jean-Claude Latombe, and Daphne Koller.
CSE 473: Artificial Intelligence Spring 2012
CSE 473: Artificial Intelligence Autumn 2011 Adversarial Search Luke Zettlemoyer Based on slides from Dan Klein Many slides over the course adapted from.
CSE 573: Artificial Intelligence Autumn 2012
6. Fully Observable Game Playing
Minimax.
AD FOR GAMES Lecture 4. M INIMAX AND A LPHA -B ETA R EDUCTION Borrows from Spring 2006 CS 440 Lecture Slides.
Adversarial Search. Game playing Perfect play The minimax algorithm alpha-beta pruning Resource limitations Elements of chance Imperfect information.
Ch. 3 – Search Supplemental slides for CSE 327 Prof. Jeff Heflin.
Ch. 9 – FOL Inference Supplemental slides for CSE 327 Prof. Jeff Heflin.
Инвестиционный паспорт Муниципального образования «Целинский район»
Game Playing. Introduction One of the earliest areas in artificial intelligence is game playing. Two-person zero-sum game. Games for which the state space.
(x – 8) (x + 8) = 0 x – 8 = 0 x + 8 = x = 8 x = (x + 5) (x + 2) = 0 x + 5 = 0 x + 2 = x = - 5 x = - 2.
Quiz 4 : Minimax Minimax is a paranoid algorithm. True
Lecture 3: 18/4/1435 Searching for solutions. Lecturer/ Kawther Abas 363CS – Artificial Intelligence.
Supplemental slides for CSE 327 Prof. Jeff Heflin
Ch. 3 – Search Supplemental slides for CSE 327 Prof. Jeff Heflin.
Ch. 7 – Logical Agents Supplemental slides for CSE 327 Prof. Jeff Heflin.
HEURISTIC SEARCH 4 4.0Introduction 4.1An Algorithm for Heuristic Search 4.2Admissibility, Monotonicity, and Informedness 4.3Using Heuristics in Games 4.4Complexity.
ARTIFICIAL INTELLIGENCE (CS 461D) Princess Nora University Faculty of Computer & Information Systems.
Adversarial Search. Game playing u Multi-agent competitive environment u The most common games are deterministic, turn- taking, two-player, zero-sum game.
Ch. 3 – Search Supplemental slides for CSE 327 Prof. Jeff Heflin.
CMSC 421: Intro to Artificial Intelligence October 6, 2003 Lecture 7: Games Professor: Bonnie J. Dorr TA: Nate Waisbrot.
Ch. 4 – Informed Search Supplemental slides for CSE 327 Prof. Jeff Heflin.
Adversarial Search. Regular Tic Tac Toe Play a few games. –What is the expected outcome –What kinds of moves “guarantee” that?
CS382 Introduction to Artificial Intelligence Lecture 1: The Foundations of AI and Intelligent Agents 24 January 2012 Instructor: Kostas Bekris Computer.
Adversarial Search In this lecture, we introduce a new search scenario: game playing 1.two players, 2.zero-sum game, (win-lose, lose-win, draw) 3.perfect.
Ch. 7 – Logical Agents Supplemental slides for CSE 327 Prof. Jeff Heflin.
Ch. 11 – Planning Supplemental slides for CSE 327 Prof. Jeff Heflin.
Return to Home! Go To Next Slide! Return to Home! Go To Next Slide!
照片档案整理 一、照片档案的含义 二、照片档案的归档范围 三、 卷内照片的分类、组卷、排序与编号 四、填写照片档案说明 五、照片档案编目及封面、备考填写 六、数码照片整理方法 七、照片档案的保管与保护.
공무원연금관리공단 광주지부 공무원대부등 공적연금 연계제도 공무원연금관리공단 광주지부. 공적연금 연계제도 국민연금과 직역연금 ( 공무원 / 사학 / 군인 / 별정우체국 ) 간의 연계가 이루어지지 않고 있 어 공적연금의 사각지대가 발생해 노후생활안정 달성 미흡 연계제도 시행전.
Жюль Верн ( ). Я мальчиком мечтал, читая Жюля Верна, Что тени вымысла плоть обретут для нас; Что поплывет судно громадней «Грейт Истерна»; Что.
Adversarial Search CMPT 463. When: Tuesday, April 5 3:30PM Where: RLC 105 Team based: one, two or three people per team Languages: Python, C++ and Java.
Chapter 5 Adversarial Search. 5.1 Games Why Study Game Playing? Games allow us to experiment with easier versions of real-world situations Hostile agents.

Ch. 2 – Intelligent Agents
Game Playing.
Supplemental slides for CSE 327 Prof. Jeff Heflin
'. \s\s I. '.. '... · \ \ \,, I.
Supplemental slides for CSE 327 Prof. Jeff Heflin
AGENT MODELS.
Ch. 19 – Knowledge in Learning
' '· \ ·' ,,,,
Approaches to search Simple search Heuristic search Genetic search
Supplemental slides for CSE 327 Prof. Jeff Heflin
Ch. 5 – Adversarial Search
Supplemental slides for CSE 327 Prof. Jeff Heflin
Supplemental slides for CSE 327 Prof. Jeff Heflin
Supplemental slides for CSE 327 Prof. Jeff Heflin
Supplemental slides for CSE 327 Prof. Jeff Heflin
Adversarial Search Game Theory.
Ch. 5 – Adversarial Search
Ch. 2 – Intelligent Agents
Supplemental slides for CSE 327 Prof. Jeff Heflin
Supplemental slides for CSE 327 Prof. Jeff Heflin
Supplemental slides for CSE 327 Prof. Jeff Heflin
Presentation transcript:

Ch. 5 – Adversarial Search Supplemental slides for CSE 327 Prof. Jeff Heflin

Tic-Tac-Toe Transition Model XX O O X O XXO O X O to top-left O to bottom-center O to top-center O to top-right O XXO O X O XXO O X XXO OOX

Minimax Algorithm function M INIMAX -D ECISION (state) returns an action return arg max a  ACTIONS(s) M IN -V ALUE (R ESULT (state,a)) function M AX -V ALUE (state) returns a utility value if T ERMINAL -T EST (state) then return U TILITY (state) v  -  for each a in A CTIONS (state) do v  M AX (v, M IN -V ALUE (R ESULT (s,a))) return v function M IN -V ALUE (state) returns a utility value if T ERMINAL -T EST (state) then return U TILITY (state) v  +  for each a in A CTIONS (state) do v  M IN (v, M AX -V ALUE (R ESULT (s,a))) return v From Figure 5.3, p. 166

Utility-Based Agent sensors actuators Agent Environment What the world is like now What action I should do now Utility State How the world evolves What my actions do What it will be like if I do action A How happy will I be in such a state

Minimax with Cutoff Limit function M INIMAX -D ECISION (state) returns an action return arg max a  A CTION S(s) M IN -V ALUE (R ESULT (state,a),0) function M AX -V ALUE (state,depth) returns a utility value if C UTOFF -T ES t(state,depth) then return E VAL (state) v  -  for each a in A CTIONS (state) do v  M AX (v, M IN -V ALUE (R ESULT (s,a)), depth+1) return v function M IN -V ALUE (state,depth) returns a utility value if C UTOFF -T ES t(state,depth) then return E VAL (state) v  +  for each a in A CTIONS (state) do v  M IN (v, M AX -V ALUE (R ESULT (s,a)), depth+1) return v