EE359 – Lecture 7 Outline Multipath Intensity Profile Doppler Power Spectrum Shannon Capacity Capacity of Flat-Fading Channels Fading Statistics Known.

Slides:



Advertisements
Similar presentations
OFDM Transmission over Wideband Channel
Advertisements

نیمسال اوّل افشین همّت یار دانشکده مهندسی کامپیوتر مخابرات سیّار (626-40) ظرفیت انتقال اطلاعات.
Wireless Communication
EE359 – Lecture 8 Outline Capacity of Fading channels Fading Known at TX and RX Optimal Rate and Power Adaptation Channel Inversion with Fixed Rate Capacity.
Fading multipath radio channels Narrowband channel modelling Wideband channel modelling Wideband WSSUS channel (functions, variables & distributions)
EE 6332, Spring, 2014 Wireless Communication Zhu Han Department of Electrical and Computer Engineering Class 4 Jan. 27 th, 2014.
1 Small-scale Mobile radio propagation Small-scale Mobile radio propagation l Small scale propagation implies signal quality in a short distance or time.
EE359 – Lecture 9 Outline Announcements: Project proposals due this Friday at 5pm; create website Midterm date: Thurs Nov. 7, 5:30-7:30 or 6-8pm? Practice.
Capacity of Wireless Channels
1 SYSC4607 – Lecture 5 Outline Announcements: Tutorial important: Review of Probability Theory and Random Processes Review of Last Lecture Narrowband Fading.
EE359 – Lecture 5 Outline Review of Last Lecture Narrowband Fading Model In-Phase and Quad Signal Components Cross Correlation of RX Signal in NB Fading.
Three Lessons Learned Never discard information prematurely Compression can be separated from channel transmission with no loss of optimality Gaussian.
1 Mobile Communication Systems 1 Prof. Carlo Regazzoni Prof. Fabio Lavagetto.
Mobile Radio Propagation - Small-Scale Fading and Multipath
Wireless and Mobile Communication Systems
ECE 776 Information Theory Capacity of Fading Channels with Channel Side Information Andrea J. Goldsmith and Pravin P. Varaiya, Professor Name: Dr. Osvaldo.
5: Capacity of Wireless Channels Fundamentals of Wireless Communication, Tse&Viswanath 1 5. Capacity of Wireless Channels.
Wireless Communication Channels: Small-Scale Fading
ECE 4730: Lecture #10 1 MRC Parameters  How do we characterize a time-varying MRC?  Statistical analyses must be used  Four Key Characteristics of a.
EE359 – Lecture 15 Outline Announcements: HW due Friday MIMO Channel Decomposition MIMO Channel Capacity MIMO Beamforming Diversity/Multiplexing Tradeoffs.
1 Lecture 9: Diversity Chapter 7 – Equalization, Diversity, and Coding.
ECE 480 Wireless Systems Lecture 14 Problem Session 26 Apr 2006.
TAP Channel Measurement Fundamentals, Goals, and Plans.
EE359 – Lecture 5 Outline Announcements: HW posted, due Thursday 5pm Background on random processes in Appendix B Lecture notes: No need to take notes.
EE 6332, Spring, 2014 Wireless Communication Zhu Han Department of Electrical and Computer Engineering Class 3 Jan. 22 nd, 2014.
The Wireless Channel Lecture 3.
EE 6332, Spring, 2014 Wireless Communication Zhu Han Department of Electrical and Computer Engineering Class 11 Feb. 19 th, 2014.
EE359 – Lecture 15 Outline Introduction to MIMO Communications MIMO Channel Decomposition MIMO Channel Capacity MIMO Beamforming Diversity/Multiplexing.
© 2002 Pearson Education, Inc. Commercial use, distribution, or sale prohibited. Wireless Communications Principles and Practice 2 nd Edition T.S. Rappaport.
Wireless Communications Principles and Practice 2 nd Edition T.S. Rappaport Chapter 5: Mobile Radio Propagation: Small-Scale Fading and Multipath as it.
EE359 – Lecture 14 Outline Announcements: HW posted tomorrow, due next Thursday Will send project feedback this week Practical Issues in Adaptive Modulation.
1 What is small scale fading? Small scale fading is used to describe the rapid fluctuation of the amplitude, phases, or multipath delays of a radio signal.
Adaphed from Rappaport’s Chapter 5
Part 3: Channel Capacity
Statistical Description of Multipath Fading
5: Capacity of Wireless Channels Fundamentals of Wireless Communication, Tse&Viswanath 1 5. Capacity of Wireless Channels.
EE359 – Lecture 6 Outline Review of Last Lecture Signal Envelope Distributions Average Fade Duration Markov Models Wideband Multipath Channels Scattering.
Fading in Wireless Communications Yan Fei. Contents  Concepts  Cause of Fading  Fading Types  Fading Models.
EE359 – Lecture 15 Outline Announcements: HW posted, due Friday MT exam grading done; l Can pick up from Julia or during TA discussion section tomorrow.
EE359 – Lecture 4 Outline Announcements: 1 st HW due tomorrow 5pm Review of Last Lecture Model Parameters from Empirical Measurements Random Multipath.
EE359 – Lecture 6 Outline Announcements: HW due tomorrow 5pm Next 3 lectures rescheduled: 10/12 (Mon), 10/16 (Fri), 10/19 (Mon), all in Huang Eng. Center,
EE359 – Lecture 9 Outline Linear Modulation Review
EE359 – Lecture 16 Outline Announcements Proposals due this Friday, 5pm (create website, url) HW 7 posted today, due 12/1 TA evaluations: 10 bonus.
Midterm Review Midterm only covers material from lectures and HWs
EE359 – Lecture 10 Outline Average P s (P b ) MGF approach for average P s Combined average and outage P s P s due to Doppler ISI P s due to ISI.
Channel Capacity.
EEE 441 Wireless And Mobile Communications
Small-Scale Fading Prof. Michael Tsai 2016/04/15.
EE359 – Lecture 16 Outline ISI Countermeasures Multicarrier Modulation
الخبو صغير المقياس أو(المدى)
EE359 – Lecture 15 Outline Announcements: MIMO Channel Capacity
EE359 – Lecture 14 Outline Practical Issues in Adaptive Modulation
EE359 – Lecture 6 Outline Announcements: Review of Last Lecture
EE359 – Lecture 8 Outline Capacity of Flat-Fading Channels
EE359 – Lecture 15 Outline Announcements: MIMO Channel Capacity
Midterm Review Midterm only covers material from lectures and HWs
Wireless Communication Channel Capacity
Wireless Communication Channel Capacity
EE359 – Lecture 9 Outline Announcements: Linear Modulation Review
Radio Propagation Review
EE359 – Lecture 9 Outline Linear Modulation Review
EE359 – Lecture 7 Outline Announcements: Multipath Intensity Profile
EE359 – Lecture 5 Outline Announcements:
EE359 – Lecture 5 Outline Announcements:
EE359 – Lecture 7 Outline Announcements: Shannon Capacity
EE359 – Lecture 8 Outline Announcements Capacity of Fading channels
EE359 – Lecture 6 Outline Announcements: Review of Last Lecture
EE359 – Lecture 6 Outline Review of Last Lecture
Midterm Review Midterm only covers material from lectures and HWs
EE359 – Lecture 7 Outline Shannon Capacity
Presentation transcript:

EE359 – Lecture 7 Outline Multipath Intensity Profile Doppler Power Spectrum Shannon Capacity Capacity of Flat-Fading Channels Fading Statistics Known Fading Known at RX

Review of Last Lecture Signal envelope distributions: CLT approx.  Rayleigh distribution (power exponential) When LOS present, Ricean distribution used Measurements support Nakagami distribution Average Fade Duration: Rayleigh fading AFD Wideband Channels Individual multipath components resolvable True when time difference between multipath components exceeds signal bandwidth R t1t1 t2t2 t3t3

Characterizing Wideband Channels Wideband channels introduce time-distortion (  ) and time-variation (Doppler,  ) Wideband channels c(  t) characterized by scattering function from A c (  1,  2,  t)=A c ( ,  t)  Narrowband  Wideband   s( ,  )= F  t [A c ( ,  t)] Characterizes delay spread & Doppler

Multipath Intensity Profile Defined as A c ( ,  t=0)= A c (  ) Determines average (T M ) and rms (   ) delay spread Approximate max delay of significant m.p. Coherence bandwidth B c =1/T M Maximum frequency over which A c (  f)=F[A c (  )]>0 A c (  f)=0 implies signals separated in frequency by  f will be uncorrelated after passing through channel  Ac()Ac() TMTM  f A c (f) 0 Bc

Doppler Power Spectrum S c (  )=F[A c ( ,  t)]= F[A c (  t)] Doppler spread B d is maximum doppler for which S c (  )=>0. Coherence time T c =1/B d Maximum time over which A c (  t)>0 A c (  t)=0 implies signals separated in time by  t will be uncorrelated after passing through channel  Sc()Sc() BdBd

Shannon Capacity Defined as the maximum MI of channel Maximum error-free data rate a channel can support. Theoretical limit (not achievable) Channel characteristic Not dependent on design techniques

Capacity of Flat-Fading Channels Capacity defines theoretical rate limit Maximum error free rate a channel can support Depends on what is known about channel Fading Statistics Known Hard to find capacity Fading Known at Receiver Only

Capacity with Fading Known at Transmitter and Receiver For fixed transmit power, same as with only receiver knowledge of fading Transmit power P(  ) can also be adapted Leads to optimization problem

Optimal Adaptive Scheme Power Adaptation Capacity 1  00  Waterfilling

Channel Inversion Fading inverted to maintain constant SNR Simplifies design (fixed rate) Greatly reduces capacity Capacity is zero in Rayleigh fading Truncated inversion Invert channel above cutoff fade depth Constant SNR (fixed rate) above cutoff Cutoff greatly increases capacity l Close to optimal

Capacity in Flat-Fading Rayleigh Log-Normal

Main Points Delay spread defines maximum delay of significant multipath components. Inverse is coherence BW Doppler spread defines maximum nonzero doppler, its inverse is coherence time Fundamental channel capacity defines maximum data rate that can be supported on a channel Capacity in fading depends what is known at TX & RX Capacity with RX CSI is average of AWGN capacity Capacity with TX/RX knowledge: variable-rate variable- power transmission (water filling) optimal Almost same capacity as with RX knowledge only Channel inversion practical, but should truncate