Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.1 Corinne GROISELLE  Coded aperture tomography (thesis subject) (thesis subject)  Compton scattering.

Slides:



Advertisements
Similar presentations
Topic 8. Gamma Camera (II)
Advertisements

Instruments for Radiation Detection and Measurement Lab # 4.
Computers and Computed Tomography
Gamma Camera Quality Control
IMAGE QUALITY.
 Nuclear Medicine Effect of Overlapping Projections on Reconstruction Image Quality in Multipinhole SPECT Kathleen Vunckx Johan Nuyts Nuclear Medicine,
Chapter 8 Planar Scintigaraphy
CT Multi-Slice CT.
Introduction to PET/CT in Oncology: Practical Aspects Jeffrey T. Yap, PhD Department of Imaging Dana-Farber Cancer Institute.
Frank P. Dawry Parathyroid Gland Imaging. Frank P. Dawry Physiology of Parathyroid Glands Regulation of serum calcium levels via synthesis and release.
Nuclear Medicine Spring 2009 FINAL. 2 NM Team Nuclear medicine MD Nuclear medicine MD Physicist Physicist Pharmacist Pharmacist Technologist Technologist.
QC And NEMA In The Nuclear Arena
Special Imaging Techniques Chapter 6 Bushong. Dynamic Computed Tomography (DCT) Dynamic scanning implies 15 or more scans in rapid sequence within one.
PHYSICS IN NUCLEAR MEDICINE: QUANTITAITVE SPECT AND CLINICAL APPLICATIONS Kathy Willowson Department of Nuclear Medicine, Royal North Shore Hospital University.
Planar scintigraphy produces two-dimensional images of three dimensional objects. It is handicapped by the superposition of active and nonactive layers.
Maurizio Conti, Siemens Molecular Imaging, Knoxville, Tennessee, USA
Medical Image Analysis Introduction Figures come from the textbook: Medical Image Analysis, by Atam P. Dhawan, IEEE Press, 2003.
– The clinical utility of ultrafast cardiocentric 3D SPECT novel semi-conductor scanner technology – Berry Allen PhD 31 August 2013.
Basic principles Geometry and historical development
COMPUTED TOMOGRAPHY I – RAD 365 CT - Scan
Measurement of liver blood flow using [ 15 O]H 2 O and PET Literature review 7 th Modelling Workshop in Turku PET Centre, 20 th October 2005 Turku PET.
Coincidence imaging today
PET data preprocessing and alternative image reconstruction strategies.
Design and simulation of micro-SPECT: A small animal imaging system Freek Beekman and Brendan Vastenhouw Section tomographic reconstruction and instrumentation.
Innovation is in our genes. 1 Siemens Medical Solutions Molecular Imaging What are SPECT basics?
Nuclear Medicine Quality control.
Fundamental Limits of Positron Emission Tomography
EuroMedIm Irène Buvat - May Quantification in emission tomography: challenges, solutions, performance and impact Irène Buvat U678 INSERM,
M. Alnafea1*, K. Wells1, N.M. Spyrou1 & M. Guy2
Z. El Bitar1, R. H. Huesman2, R. Buchko2, D. Brasse1, G. T. Gullberg2
Single Photon Emission Computed Tomography
Nuclear Medicine: Planar Imaging and the Gamma Camera Katrina Cockburn Nuclear Medicine Physicist.
BMI I FS05 – Class 4 “Nuclear Imaging: Math” Slide 1 Biomedical Imaging I Class 5 – Radionuclide Imaging (PET, SPECT), Part 3: Attenuation and Scatter.
Professor Brian F Hutton Institute of Nuclear Medicine University College London Emission Tomography Principles and Reconstruction.
O AK R IDGE N ATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY Image Reconstruction of Restraint-Free Small Animals with Parallel and Multipinhole Collimation:
Image Acquisition and Processing Hardware
Ultrasound, Positron Emission Tomography, and Single Photon Emission Tomography Allen T. Newton, Ph.D. PAVE 2014.
VIII.0 Medical Exposures in Nuclear Medicine.
M. D. A NDERSON Cancer Center Nuclear Imaging (M.Cam) Richard E. Wendt III, Ph.D. and William D. Erwin, M.S. Small Animal Cancer Imaging Research Facility.
Li HAN and Neal H. Clinthorne University of Michigan, Ann Arbor, MI, USA Performance comparison and system modeling of a Compton medical imaging system.
Nuclear Medicine: Tomographic Imaging – SPECT, SPECT-CT and PET-CT Katrina Cockburn Nuclear Medicine Physicist.
Figure 6. Parameter Calculation. Parameters R, T, f, and c are found from m ij. Patient f : camera focal vector along optical axis c : camera center offset.
Nuclear Medicine Principles & Technology_I
Part No...., Module No....Lesson No
Part No...., Module No....Lesson No
Impact of Axial Compression for the mMR Simultaneous PET-MR Scanner Martin A Belzunce, Jim O’Doherty and Andrew J Reader King's College London, Division.
1 Nuclear Medicine SPECT and PET. 2 a good book! SR Cherry, JA Sorenson, ME Phelps Physics in Nuclear Medicine Saunders, 2012.
Acquisition time6 min1 min 12 s Collimator height25 mm (Anger)12 mm (HiSens) Detector1 layer, 1 pixel / hole3 layers, 1 pixel / hole3 layers, 4 pixels.
Nuclear Medicine Physics and Equipment 243 RAD 1 Dr. Abdo Mansour Assistant Professor of radiology
RPC February 2010 SPATIAL RESOLUTION OF HUMAN 3D RPC-PET SYSTEM 1 LIP, Laboratório de Instrumentação e Física Experimental de Partículas, Coimbra,
Biomarkers from Dynamic Images – Approaches and Challenges
Chapter-4 Single-Photon emission computed tomography (SPECT)
Introduction to Medical Imaging Week 3: Introduction to Medical Imaging Week 3: CT – Reconstruction and uses Guy Gilboa Course
Computed Tomography Computed Tomography is the most significant development in radiology in the past 40 years. MRI and Ultrasound are also significant.
Introduction to Medical Imaging SPECT, Introduction to Medical Imaging SPECT, PET and Lesion Detection Guy Gilboa Course
The study of new reconstruction method
Computed tomography. Formation of a CT image Data acquisitionImage reconstruction Image display, manipulation Storage, communication And recording.
Nuclear Medicine Physics
Computed Tomography Basics
Imaging molecolare ad alta risoluzione spaziale ed alta efficienza
Image quality and Performance Characteristics
by: Prof.Dr. Hosna Moustafa Cairo University, Egypt
Application of Nuclear Physics
Advanced Clinical Practice in Nuclear Medicine
Single Photon Emission Tomography
QC And NEMA In The Nuclear Arena
Basic principles Geometry and historical development
Function and Structure in
First demonstration of portable Compton camera to visualize 223-Ra concentration for radionuclide therapy Kazuya Fujieda (Waseda University) J. Kataoka,
Assist. Prof. Dr. Ilker Ozsahin Oct
Presentation transcript:

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.1 Corinne GROISELLE  Coded aperture tomography (thesis subject) (thesis subject)  Compton scattering correction  Brain perfusion index determination  Thallium - Mibi wash out

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.2 CODED APERTURE TOMOGRAPHY: 3D RECONSTRUCTION BY A ML-EM ALGORITHM USING TWO ORTHOGONAL PROJECTIONS

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.3 INTRODUCTION SPECT multiples incidences parallel collimator reconstruction (FBP or iterative) slices perpendicular to the detector Coded aperture tomography an unique incidence multi pinhole mask iterative reconstruction (ML-EM) slices parallel to the detector

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.4 ADVANTAGES Spatial resolution improvement Sensibility improvement Tomographic acquisitions possibility: –dynamics –multi spectral acquisitions Attempted advantages of the coded aperture tomography are in relation with the multi pinhole characteristics:

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.5 Principle PRINCIPLE OF OUR METHOD Optical instrument –focal distance, f –proximal slice, b –volume of detection detector mask f detector activity b f

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.6 OBJECT ACQUISITIO N CODED VIEW 256x256 COMPUTING: decoding iterative reconstruction SLICES PARALLEL TO THE DETECTOR SYNOPTIC

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.7 PROTECTIVE MEASURES Patent (n° /12/90) R&D Sopha Medical Vision Intl.

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.8 MATERIAL Gamma-camera DST-XL (SMV Intl.) –FOV: 540 x 400 mm² Coded aperture mask –196 pinholes with a 3.1 mm diameter –f = mm –b = mm Volume of detection –w = mm –l = mm –d = mm

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.9 MATERIAL  Thyroid phantom  256x256 matrix  2 orthogonal projections

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.10 ‚   RL Plexiglas ® 23 mm 2.5 mm 23 mm 2.5 mm 23 mm 2.5 mm 17 mm 8mm Plexiglas ® b RG  ‚  CHARACTERISTICS a d c 8 mm 17 mm 8 mm 12 mm13 mm 10 mm 7 mm Active: A/2 Not active Active: A

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.11 METHOD: DECODING Decoding is in relation with: System geometry: focal distance, pinhole Voxels: 4.5 x 4.5 x 4.5 mm 3 Pixels: 2.25 mm for a 256x256 matrix Pixels: 4.52 mm for a 128x128 matrix

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.12 METHOD: RECONSTRUCTION ML-EM iterative algorithm (Lange et Carson J. Comput. Assist. Tomogr. Vol. 8, n°2, 1984) OjOj IiIi J I correction

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.13 RESULTS: PROJECTIONS 1 st incidence2 nd incidence (orthogonal)

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.14 RESULTS: RECONSTRUCTION 29 slices 39 x 29 matrix voxel size: 4.5 mm IBM work station

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.15 RESULTS: RECONSTRUCTION

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.16 RESULTS: RECONSTRUCTION

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.17 SPATIAL RESOLUTION: R x (z) Intrinsic resolution: R I =3.7mm Mask spatial resolution: –pinhole projection size on the detector Detector spatial resolution: Slices spatial resolution: theoretically : mm 5.4 mm

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.18 DISCUSSION Position +++ Shape +++ Tomographic effect +++ Resolution x128 quality  256x256 quality  Uniformity – – –

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.19 CONCLUSION Acquisition sensibility x10 vs. LEUHR  acquisition time   dose   No rotation or translation  acquisition time   no artifact due to motion (patient or camera)  Tomographic effect +++

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.20 PERSPECTIVES Patient acquisition

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.21 ADAPTATIVE COMPTON SCATTERING CORRECTION FOR CODED APERTURE

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.22 CODED APERTURE TOMOGRAPHY 1 coded projection ML-EM iterative reconstruction algorithm slices parallel to the detector GE 400 AC

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.23 GOAL OF OUR STUDY Eliminating Compton scattered photons PH PRETORIUS & al. The Channel Ratio Method of Scatter Correction for Radionucleide Image Quantitation J Nucl Med 1993, 34,

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.24 METHOD Energy (keV) Counts percentage F : High energy window E : Low energy window Compton Scatter Primary photons

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.25 MATERIAL AND METHOD (1) CALIBRATION 99m Tc point source –acquisitions on air : no scatter –acquisitions with water : scatter correction matrices: G & H

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.26 CORRECTION Matrix GMatrix H matrix Gmatrix H 0 Corrected view  corrected view  H update -  water < limite END no yes For different water depths Low energy window counts High energy window counts

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.27 MATERIAL AND METHOD (2) Thyroid phantom (~ 500 µCi of 99m Tc) –simples acquisitions –acquisitions with 4 cm of Plexiglas®

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.28 CODED APERTURE PROJECTIONS Thyroid phantom - 99m Tc Point source - 99m Tc

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.29 ADAPTATION TO THE CODED APERTURE PROJECTIONS Pretorius Region of Interest drawn on the point source view Uniform correction matrices Very high counts rate on the ROI Coded aperture Coded aperture projection is different from the object shape Local correction of each pixel of the view Very high standard deviation

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.30 RESULTS: THYROID PHANTOM Reference view 140 keV ± 10% Corrected slice by the adaptive Pretorius method

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.31 RESULTS: THYROID PHANTOM + 4 cm PLEXIGLAS® Reference view 140 keV ± 10% Corrected slice by the adaptive Pretorius method

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.32 CONCLUSION Contrast enhancement Resolution improvement Simple and fast method

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.33 IMPROVEMENT IN MEASURING 99m Tc-ECD BRAIN PERFUSION INDEX BY TEMPORAL ANALYSIS

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.34 INTRODUCTION Brain perfusion imagery –cerebral blood flow Nuclear Medicine Imagery –Radioactivity detected in counts/min. but not as a flow (ml/min.) Interest of an absolute brain perfusion index for clinical studies

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.35 REFERENCE Matsuda & al. –Eur J Nucl Med 1992, 19, 195:200 : A Quantitative Approach to Technetium-99m HexaMethyl- Propylene Amine Oxime –Eur J Nucl Med 1995, 22, 633:637 : A Quantitative Approach to 99m-Ethyl Cysteinate Dimer : A Comparison with Technetium-99m HexaMethyl- Propylene Amine Oxime

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.36 MATSUDA’S METHOD Dynamic study –Brain angioscintigraphy Aorta activity –Region of interest on the aortic arch Brain activity –Regions of interest on brain hemispheres Brain perfusion index –Ratio of cumulated counts in aorta and brain ROIs

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.37 DISADVANTAGES OF MATSUDA’S METHOD Aortic arch Very low counts rate ROI manually drawn

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.38 GOAL OF OUR STUDY Improvement of ROI drawing to make this method not observer dependant

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C patients & 4 observers Head position : OM orthogonal to the detector Bolus injection of 800 MBq of 99mTc-ECD Brain angioscintigraphy –150 views at 1-second interval –anterior and posterior view MATERIAL AND METHOD

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.40 DATA POST-PROCESSING (1) Factorial Analysis with 3 main components on the cardiac first past frames –entry of the bolus in the right atrium –pulmonary transit phase –passage of the tracer into the aorta

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.41 DATA POST- PROCESSING (2) First Harmonic Fourier Analysis on the obtained curves Low-pass filter Isocontour algorithm to draw the aortic arch outline Phase Amplitude

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.42 DATA POST-PROCESSING (3) Sum of the posterior frames Low-pass filter Line on the OM Mask to highlight the brain image ROIs of each hemisphere are hand-drawn

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.43 DATA POST-PROCESSING (4) Brain perfusion index Time/activity curves BPI = 100. k u. ROI aorta size ROI brain size B(t) A(t) A(  ) d   t  kuku A0A0 B0B0 A0A0 B0B0 1 - aorta 2 - brain

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.44 RESULTS

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.45 CONCLUSION ROI accuracy +++ Reproducibility +++ User friendly-method +++

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.46 PERSPECTIVES Automatically brain ROIs outlines draw Observer independent method

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.47 FUNCTIONAL IMAGERY OF BRONCHIAL TUMOR RESISTANCE Groiselle C., Moretti J.-L., Michel A., Safi N.

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.48 INTRODUCTION Thallium 201 ( 201 Tl) and Sestamibi Tc-99m (MIBI) are tumors tracers Intra-tumors concentration is dependent on perfusion MIBI is recognized by PgP and MRP Proteins incite wash-out Groiselle C., Moretti J.-L., Michel A., Safi N.

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.49 GOAL OF THIS STUDY Finding bronchial carcinoma with two tracers and planar & dynamic views so as to determine wash-out Groiselle C., Moretti J.-L., Michel A., Safi N.

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.50 MATERIAL AND METHOD Patients : 15 males (60 ± 7 years) Groiselle C., Moretti J.-L., Michel A., Safi N.

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.51 ACQUISITION t 0 –bolus injection of 110 MBq of 201 Tl in the brachial vein on opposite side from the tumor –dynamic acquisition : 18 frames at 2-minutes interval –2 energy windows : 71 keV ± 10% & 140 keV ± 10% t min. –bolus injection of 700 MBq of MIBI t min. –planar acquisition Groiselle C., Moretti J.-L., Michel A., Safi N.

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.52 POST-PROCESSING Shifting of views (angiography and planar acq.) Correction of radioactive decay of planar acq. Correction of 99m Tc scattering on 201 Tl ROI draw to outline the tumor Subtraction of dynamic views from planar acq. ROI counts Groiselle C., Moretti J.-L., Michel A., Safi N.

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.53 RESULTS Groiselle C., Moretti J.-L., Michel A., Safi N. THp: extracted from Tl dynamic acquisition MIp: extracted from MIBI dynamic acquisition MIt: MIBI planar acquisition Diffp: early subtraction frame Difft: late subtraction frame

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.54 RESULTS Groiselle C., Moretti J.-L., Michel A., Safi N. THp: extracted from Tl dynamic acquisition MIp: extracted from MIBI dynamic acquisition MIt: MIBI planar acquisition Diffp: early subtraction frame Difft: late subtraction frame

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.55 CONCLUSION We can detect chemotherapy resistant tumors on thallium-MIBI functional images Groiselle C., Moretti J.-L., Michel A., Safi N.

Groiselle C., Rocchisani J.-M., Moretti J.-L., Paré C.56 Service Central de Biophysique et de Médecine Nucléaire Hôpital Avicenne - 125, rue de Stalingrad Bobigny cedex