1 Chapter Fifteen Electric Current. 2 Electric Current We consider the motion of electrons in a conductor (a metal) when there is a voltage difference.

Slides:



Advertisements
Similar presentations
Resistivity and Resistance
Advertisements

Lecture 7 Circuits Ch. 27 Cartoon -Kirchhoff's Laws Topics –Direct Current Circuits –Kirchhoff's Two Rules –Analysis of Circuits Examples –Ammeter and.
Fisica Generale - Alan Giambattista, Betty McCarty Richardson Copyright © 2008 – The McGraw-Hill Companies s.r.l. 1 Chapter 18: Electric Current and Circuits.
Chapter Fourteen The Electric Field and the Electric Potential
Chapter 27 Current And Resistance Electric Current Electric current is the rate of flow of charge through some region of space The SI unit of current.
Electric Currents and Resistance
Current and Resistance FCI.  Define the current.  Understand the microscopic description of current.  Discuss the rat at which the power.
PHY 2054: Physics II. Calculate the Electric Field at P Calculate the el. potential at P.
Chapter 17 Current and Resistance. Electric Current Let us look at the charges flowing perpendicularly to a surface of area A The electric current is.
© 2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Chapter 18 Direct Current Circuits. Sources of emf The source that maintains the current in a closed circuit is called a source of emf Any devices that.
Fundamentals of Circuits: Direct Current (DC)
1 Chapter 27 Current and Resistance. 2 Electric Current Electric current is the rate of flow of charge through some region of space The SI unit of current.
Electric Current and Direct-Current Circuits
AP Physics C: E&M. DC: Direct current. A constantly applied voltage causes charged particles to drift in one direction.
بسم الله الرحمن الرحيم FCI.
Current, Resistance, and Electromotive Force
Chapter 20: Circuits Current and EMF Ohm’s Law and Resistance
Chapter 27 Lecture 12: Circuits.
Fundamental Physics 2 Chapter 2 PETROVIETNAM UNIVERSITY FACULTY OF FUNDAMENTAL SCIENCES Vungtau 2012 Pham Hong Quang
My Chapter 18 Lecture Outline.
Lecture 12 Current & Resistance (2)
Current and Resistance Chapter 26 Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
Chapter 24 Electric Current. The electric current I is the rate of flow of charge through some region of space The SI unit of current is Ampere (A): 1.
Current and Direct Current Circuits
Topic 5.1 Electric potential difference, current and resistance
Lecture Outline Chapter 21 Physics, 4th Edition James S. Walker
In conclusion, there are two requirements which must be met in order to establish an electric circuit. The requirements are: 1.There must.
Usually a diluted salt solution chemical decomposition
FCI. Direct Current Circuits: 3-1 EMF 3-2 Resistance in series and parallel. 3-3 Rc circuit 3-4 Electrical instruments FCI.
Lecture 13 Direct Current Circuits
Direct Current And Resistance Electric Current The Battery Resistance And Ohm’s Law Power Internal Resistance Resistors In Combination RC Circuits Written.
Current, Resistance and Power
“Over the weekend, I reviewed the exam and figured out what concepts I don’t understand.” A] true B] false 1 point for either answer.
Chapter 17 Current and Resistance. Electric Current Let us look at the charges flowing perpendicularly to a surface of area A The electric current is.
Chapter 25 Electric Circuits.
10/9/20151 General Physics (PHY 2140) Lecture 10  Electrodynamics Direct current circuits parallel and series connections Kirchhoff’s rules Chapter 18.
FUNDAMENTALS OF ELECTRIC CIRCUITS EE 318 Dr. ARVIND TIWARI B1-S DEPARTMENT OF ELECTRICAL ENGINEERING, COLLEGE OF.
Electric Current and Resistance Unit 16. Electric Current  The current is the rate at which the charge flows through a surface Look at the charges flowing.
Chapter 27 Current and Resistance. Intro Up until now, our study of electricity has been focused Electrostatics (charges at equilibrium conditions). We.
Chapter 26 Current and Resistance. 26.2: Electric Current: Although an electric current is a stream of moving charges, not all moving charges constitute.
Current Electric Current (I)
Electric Circuit Charges in Motion OCHS Physics Ms. Henry.
Chapter 19 DC Circuits. Objective of the Lecture Explain Kirchhoff’s Current and Voltage Laws. Demonstrate how these laws can be used to find currents.
Current � and � Resistance Electric Current Resistance and Ohm’s Law A Model for Electrical Conduction Resistance and Temperature Superconductor Electrical.
Phys 2180 Lecture (5) Current and resistance and Direct current circuits.
Current Electricity Electric Current Circuit – continuous conducting path between terminals of a battery (or other source of EMF) Electric Current.
Chapter 28 Direct Current Circuits. Direct Current When the current in a circuit has a constant direction, the current is called direct current Most of.
Lecture 11-1 Electric Current Current = charges in motion Magnitude rate at which net positive charges move across a cross sectional surface Units: [I]
Current and Resistance FCI.  Define the current.  Understand the microscopic description of current.  Discuss the rat at which the power.
TUesday, April 12, PHYS Dr. Andrew Brandt PHYS 1444 – Section 02 Review #2 Tuesday April 12, 2011 Dr. Andrew Brandt TEST IS THURSDAY 4/14.
Chapter 27 Current and Resistance. Electric Current The electric current I is the rate of flow of charge through some region of space The SI unit of current.
Chapter 17 Current and Resistance. Electric Current Whenever electric charges of like signs move, an electric current is said to exist The current is.
Current and Resistance
Current and Resistance FCI.  Define the current.  Understand the microscopic description of current.  Discuss the rat at which the power.
Introduction to Electricity Electric charges come in two varieties. We have named these positive and negative. To be mathematically consistent all of electricity.
Chapter 20 Electric Circuits Electromotive Force and Current Within a battery, a chemical reaction occurs that transfers electrons from one terminal.
Electromagnetism Zhu Jiongming Department of Physics Shanghai Teachers University.
Chapter 27 Lecture 23: Circuits: I. Direct Current When the current in a circuit has a constant direction, the current is called direct current Most of.
Chapter 27: Current and Resistance Fig 27-CO, p Electric Current 27.2 Resistance and Ohm’s Law 27.4 Resistance and Temperature 27.6 Electrical.
Lectures 7 to 10 The Electric Current and the resistance Electric current and Ohm’s law The Electromotive Force and Internal Resistance Electrical energy.
1 §18.1 Electric Current e-e- e-e- e-e- e-e- e-e- e-e- e-e- e-e- A metal wire. Assume electrons flow to the right. Current is a measure of the amount of.
1© Manhattan Press (H.K.) Ltd Potentiometer Comparing resistances Measuring the e.m.f. of a cell Measuring the internal resistance of a cell.
CURRENT, RESISTANCE, AND ELECTROMOTIVE FORCE Chapter 4.
Solar Magnetic Fields. Capacitors in Circuits Charge takes time to move through wire  V is felt at the speed of light, however Change in potential across.
Current = charges in motion
Current and Resistance
Figure Charges in motion through an area A
Circuits, cont. Calculating the current in the circuit is called circuit analysis Two types of circuits: DC stands for direct current The current is of.
Coulomb’s Law Charges with the same sign repel each other, and charges with opposite signs attract each other. The electrostatic force between two particles.
Presentation transcript:

1 Chapter Fifteen Electric Current

2 Electric Current We consider the motion of electrons in a conductor (a metal) when there is a voltage difference applied between the ends of the conductor. We will limit our discussion mostly to direct currents, that is, currents whose magnitude and direction do not change with time.

3 Motion of Charges in an Electric Field By Newton's second law F = ma we have where q represents an arbitrary charge.

4 In the case of an electron, and the mass of an electron is Thus We may calculate the velocity of the electrons after they travel a distance s assuming that no scattering (or collisions) occurs over that distance. When and, the velocity is

5 Electric Current The motion of an electron in an electric field is a series of short accelerations interrupted by collisions that scatter the electron. It has a random path, although there is a slow net velocity opposite to the field direction (see Fig. 15-1). It is the net velocity of the electrons, called the drift velocity, that gives rise to the current, not the brief accelerations.

6

7 The charge that flows by in time through a plane perpendicular to a wire is defined as electric current i, where When i is not constant we define electric current as

8 In the SI units, current is measured in amperes, or amps. One ampere (1A) is equal to one coulomb per second and is a relatively large quantity. We use the milliampere (1 mA = A) or the microampere (1 μ A = A).

9 See Fig Assume that there are both positive and negative charges, both of which are mobile in the presence of an electric field with a vector direction from left to right. Assume that there are N p (N n ) positive (negative) charges per unit volume with drift velocity of v p (v n ).

10

11 In time the positive charges will move from left to right a distance of. If each charge has a charge q p, the charge flowing across the right end of the cylinder is Thus,

12 In the same way, the negative particles, each with charge q n, flow from right to left given rise to a current Both the sign of the charge q n and the sign of the drift velocity v n are negative and therefore their product is positive.

13 A flow of negative charges to the left is equivalent to a flow of positive charges to the right. Thus, The direct current i in a conductor has the same direction as that of the electric field.

14 There is no pileup of electric charges in the wire at any point. If we connect a wire between the terminals of a battery, it is therefore reasonable to conclude that charge flows at a steady rate throughout the wire. The current density is defined as the current per unit cross-sectional area, that is

15 Example 15-1 Suppose a copper wire carries 10 A (amps) of current and has a cross-section of m 2. As will be seen later, each atom of copper contributes one electron that is free to move, so the electron carrier density N n is about the same as the density of atoms, which is about 7 × atoms per m 3. The charge on an electron is -1.6 × C. (a) What is the drift velocity v n of the electrons? (b) How long would it take an electron to move from one terminal of a battery to the other if this wire were 1 m long?

16 Sol (a) (b) So the actual drift velocity of a given electron is very small. The speed of propagation of the electric field along the wire is that of the speed of light in the wire.

17 Resistance and Resistivity Experiment shows that in many cases the electric current i, hence the current density J, are proportional to E.. Define electrical resistivity ρ as The resistivity is a property of a given material and is independent of its shape.

18 The resistivity was found to be a constant for a given metal at a given temperature by G. Ohm. Thus, the above equation is called Ohm's law. A material obeying Ohm's law is called an ohmic conductor. The units of ρ ( called ohm meter, Ω -m) is See Table 15-1

19 The conductivity σ is defined as Suppose we have a given metal wire with cross section A, length l, and resistivity ρ with an applied electric field (see Fig. 15-3). The potential difference between the two ends of the conductor, point 1 and 2 is

20

21 If the electric field inside the conductor is uniform, where l = s 2 - s 1. Thus, which can be written as where V means and R is called resistance of the wire and has units of Ω (ohms). The current in a resistance (resistor) is from its high potential side to its low potential side.

22 Resistances in Series and Parallel See Fig The voltage difference across a resistance (resistor) is called voltage drop. See Fig The electric potential at point A is the same as that at the left side of the battery (emf), and that at point D is the same as the right side of the battery. The same current must pass through each of these resistances at that which passes between points A and D. This combination is called series resistances.

23

24 It is obvious that will be true regardless of the number of resistances in series. See Fig The resistances is arranged in parallel. where R eq is the equivalent resistance of the three.

25

26 The left side of each resistance is at the same potential and the right side is at the same potential, hence, the same voltage drop V must occur across each.. By Ohm's law, and

27 Thus, where

28 See Fig The current through R 1 is the same as that through R 2, and where V 1 and V 2 are the voltage drops across R 1 and R 2, respectively. Equating the i's gives

29

30 In a series circuit the ratio of the voltage drops is equal to the ratio of the resistances. See Fig The voltage across each resistance is the same and Equating V 1 and V 2 gives

31

32 In a parallel circuit the ration of the currents through each resistor is inversely proportional to the resistances.

33 Example 15-2 Suppose in Fig the voltage V = 1.5 V and the resistances are R 1 = 5 Ω ; R 2 = 10 Ω, and R 3 = 15 Ω. What are the voltages V AB, V BC, and V CD ?

34

35

36 Sol Then applying Ohm's law to each resistance

37 Example 15-3 Suppose two resistors, R 1 = 5 Ω and R 2 = 10 Ω, are connected in parallel to a 1.5 V battery as in Fig (a) What is the current through each? (b) What is the total current in the circuit?

38

39 Sol (a) Using Ohm's law (b) i = i 1 + i 2 = 300 mA mA = 450 mA. We may check this answer by solving the equivalent circuit.

40

41 Example 15-4 Three resistors are connected in a combination of series and parallel as in Fig What is the current through each?

42

43 Sol First we find R eq(p) for the parallel combination We then have the equivalent circuit, Fig. 15-8b. Now we have the simpler equivalent circuit of Fig. 15-8c.

44 By the relation given previously we have Furthermore, i = i 1 + i 2 = 346 mA. Thus,

45 Kirchhoff's Rules Two fundamental rules established by G. R. Kirchhoff that aid in the solution of electrical networks are 1. The algebraic sum of currents toward any branch point is zero. 2. The algebraic sum of all potential changes in a closed loop is zero.

46 Charge can not accumulate in a DC circuit: If it did, there would be a larger electric field at that region which would exert a larger force and thereby redistribute the charge evenly. Rule 2 is a statement of the conservation of energy.

47 In applying rule 2, it is useful to follow certain guidelines that will prevent errors in the signs of the potential changes. (a) As indicated in connection with rule 1, we first assume a direction for the current through each branch of the circuit. (b) We then choose any closed loop in the circuit and designate the direction in which we wish to mentally traverse it. (c) We now go around the loop in the chosen direction adding algebraically all the potential changes and setting the sum equal to zero.

48 When we meet an emf source, its voltage V is taken as positive if we cross the source from the negative (low potential) side to the positive (high potential) side. If in our mental trip around the circuit loop we cross a resistor in the same direction as the current, we must take the iR drop as negative because we are going from high to low potential-a decrease.

49 Consider the circuit of Fig We apply rule 2 and write Consider the circuit of Fig a. We apply rule 2 and write

50

51 Consider the circuit of Fig b. We apply rule 2 and write

52 Example 15-5 In the circuit of Fig , (a) Find the currents i C, i E, and i B and the voltage drop across resistors R 1 and R 2. (b) Find the voltage difference between points C and D and between D and E.

53

54 (a) From the first rule at branch point B For the right-hand loop, if we traverse it in the counterclockwise direction starting at point D, we have

55 For the left-hand loop, traversing it counterclockwise, we write We now have three equations to be solved simultaneously for i C, i E, and i B.

56 We can use the first equation to eliminate i B from the last two.

57 We can now solve for i E. Finally we can obtain i B

58 The voltage drop across R 1 is and the voltage drop across R 2 is

59 (b)

60 Galvanometers and Voltmeters See Fig Electric current passing through a wire produces a magnetic field. If a loop of wire is used then, on the passage of current, one end of the loop becomes the north pole of a magnet and the other end becomes the south pole. The larger the number of loops, the stronger the magnet for a given current. Similarly, the larger current, the stronger the magnet for a given number of loops.

61

62 A full-scale deflection of a instrument needle can be established for a given amount of current through the coil. This instrument is called a galvanometer. The current for full-scale deflection is called the current rating of a meter. The common current rating is 0.1 mA. To extend the range of the meter, a lower resistance, called a shunt, is placed in parallel with the meter (see Fig ).

63

64 The resistance of the coil R c is commonly 1000 Ω. From Ohm's law the voltage drop across the galvanometer in Fig must be In Fig b In Fig c

65 An instrument to measure the voltage difference between two points in a circuit is called a voltmeter (see 15-17). The idea instrument would be one that had infinite resistance since we do not want such a voltmeter to disturb the current flow through the resistor.

66

67 Power Dissipation by Resistors In an elastic collision between an electron and an atom, very little energy is transferred to the atom-most of the kinetic energy is retained by the electron in its recoil. Because many collisions are taken place, each small energy loss adds to a considerable amount. Since temperature is a measure of the average kinetic energy of the atoms of a system, we expect any conductor to heat up when an electric current is passed through it.

68 Let V A and V B represent the potentials of points A and B, respectively, and V AB the potential difference. The change in potential energy of a charge entering at A and leaving at B is

69 This represents an energy loss because V A is greater than V B. In general

70 Charging a Capacitor-RC Circuits See Fig Since, we have

71

72 See Fig At t = 0, q = CV (1-e -0 ) = CV (1-1) = 0. This agrees with the fact that at t = 0 the capacitor was unchanged. As t increases, the exponential term in the parenthesis decreases and consequently q increases. As and, the ultimate charge on the capacitor.

73

74 The time of charging rate is determined by the product RC, which is called the time constant of the circuit. The current i passing the capacitor is As and the capacitor acts as if it were a wire with no resistance. As and, the ultimate current on the capacitor.

75 Homework 15.4, 15.6, 15.8, 15.9, 15.11, 15.12, 15.13, 15.14, 15.15, 15.18, 15.20, 15.21, 15.23,