MEG 実験 液体キセノンカロリメータ におけるエネルギー分解能の追究 東大素粒子センター 金子大輔 他 MEG コラボレーション.

Slides:



Advertisements
Similar presentations
USE OF GEANT4 FOR LHCB RICH SIMULATION S. Easo, RAL, LHCB AND ITS RICH DETECTORS. TESTBEAM DATA FOR LHCB-RICH. OVERVIEW OF GEANT4 SIMULATION.
Advertisements

Prototype of the Daya Bay Neutrino Detector Wang Zhimin IHEP, Daya Bay.
MEG実験アップグレードに向けたMPPC読み出しによる 新しいタイミングカウンターの研究開発
H Yepes, C Bigongiari, J Zuñiga, JdD Zornoza IFIC (CSIC - Universidad de Valencia) NEWS ON ABSORPTION LENGTH MEASUREMENT WITH THE OB SYSTEM ANTARES COLLABORATION.
Liquid Xenon Gamma Screening Luiz de Viveiros Brown University.
Page 1 Calculating the Beam Position at the Ecal for DESY Run (Independent of Tracking) Hakan Yilmaz.
1 KEK Beam Test Analysis Hideyuki Sakamoto 15 th MICE Collaboration Meeting 10 st June,2006.
MEG 実験 陽電子スペクトロメータの 性能と今後の展望 Yuki Fujii On behalf of the MEG collaboration JPS Hirosaki University 17 th Sep /9/17 日本物理学会@弘前大学 1.
MEG II 実験液体キセノンガンマ線検出器 における再構成法の開発 Development of the event reconstruction method for MEG II liquid xenon gamma-ray detector 小川真治、 他 MEG II
Upgrade of liquid xenon gamma-ray detector in MEG experiment Daisuke Kaneko, the University of Tokyo, on behalf of the MEG collaboration MEG EXPERIMENT.
Measurement of the absolute efficiency,
PD Kobe Univ. 06/29/2007 General performance of the IceCube detector and the calibration results I am Mina Inaba from Chiba university. I will.
The Transverse detector is made of an array of 256 scintillating fibers coupled to Avalanche PhotoDiodes (APD). The small size of the fibers (5X5mm) results.
Mar Toshiyuki Iwamoto (ICEPP) JPS 2010 Spring meeting, Okayama University1 MEG 実験による   e  探索 Run2009 東京大学素粒子物理国際研究センター 岩本敏幸 他 MEG コラボレーション.
Coincidence analysis in ANTARES: Potassium-40 and muons  Brief overview of ANTARES experiment  Potassium-40 calibration technique  Adjacent floor coincidences.
1 Performance of multi-anode PMT employing an ultra bi-alkali photo-cathode and rugged dynodes Takahiro Toizumi Tokyo Institute of Technology S. Inagwa.
K1.8 meeting Report from E05 group Toshiyuki Gogami 26 Dec 2014.
Measurements of F 2 and R=σ L /σ T on Deuteron and Nuclei in the Nucleon Resonance Region Ya Li January 31, 2009 Jlab E02-109/E (Jan05)
Simulation study of RENO-50 Jungsic Park Seoul National University RENO-50 International Workshop June 13-14, 2013 Hoam Faculty House, Korea.
14/02/2007 Paolo Walter Cattaneo 1 1.Trigger analysis 2.Muon rate 3.Q distribution 4.Baseline 5.Pulse shape 6.Z measurement 7.Att measurement OUTLINE.
Analysis of PSI beam test R.Sawada 09/Feb/2004 MEG collaboration R.Sawada 09/Feb/2004 MEG collaboration
HBD Performance Estimates Zvi Citron 3 April 2008 HL Meeting.
MEG 実験におけるミュー粒子放射崩壊の 測定と利用 日本物理学会第67回年次大会 ICEPP, the University of Tokyo 内山 雄祐.
The Scintillator ECAL Beam Test at FNAL K. Kotera, Shinshu-u, 1st October 2009 CALICE Scintillator ECAL group; Kobe University, Kyungpook University, the.
MEG II 実験 液体キセノンガンマ線検出器に用いる 光検出器 MPPC の 実装に向けた最終試験 家城 佳 他 MEG II collaboration + 九大の方々.
MEG 2009 現状と展望 東京大学素粒子物理国際研究センター 岩本敏幸 他 MEG コラボレーション 日本物理学会 2009 年秋季大会 甲南大学岡本キャンパス.
Kalanand Mishra April 27, Branching Ratio Measurements of Decays D 0  π - π + π 0, D 0  K - K + π 0 Relative to D 0  K - π + π 0 Giampiero Mancinelli,
1 MEG 陽電子タイミングカウンタの ビーム中での性能評価と 解析方法の研究 * 内山雄祐 東大素粒子セ, INFN-Genova A, INFN-Pavia B 森俊則 F. Gatti. A,S.Dussoni A,G.Boca B,P.W.Cattaneo B, 他 MEG Collaboration.
MEG 実験用液体キセノン検出器の現状 東京大学素粒子物理国際研究センター 澤田龍 他 MEG カロリメータグループ 2007 年 9 月 24 日 日本物理学会 第 62 回年次大会 北海道大学.
Development of TOP counter for Super B factory K. Inami (Nagoya university) 2007/10/ th International Workshop on Ring Imaging Cherenkov Counters.
1 Satoshi Mihara for the   e  collaboration, review meeting at PSI, Jul 2002 Photon Detector Satoshi Mihara ICEPP, Univ. of Tokyo 1.Large Prototype.
1 Energy loss correction for a crystal calorimeter He Miao Institute of High Energy Physics Beijing, P.R.China.
RHIC – PHENIX 実験における単電子の測定 Single Electron Measurement at RHIC – PHENIX T. Hachiya Hiroshima Univ. For the PHENIX collaboration.
MEG II 実験のための 陽電子タイミングカウンター実機建設 Construction of Positron Timing Counter for MEG II experiment 西村美紀(東大) 他 MEGIIコラボレーション 日本物理学会 2015年 秋季大会 大阪市立大学(杉本キャンパス)
MEG Run 2008 液体キセノンガンマ線検出器 東京大学 素粒子物理国際研究セン ター 西村 康宏、 他 MEG コラボレー ション 2008 年秋季物理学会@山形大学小白川キャンパス.
R&D status of the Scintillator- strip based ECAL for the ILD Oct LCWS14 Belgrade Satoru Uozumi (KNU) For the CALICE collaboration Scintillator strips.
Test beam preliminary results D. Di Filippo, P. Massarotti, T. Spadaro.
MEG 実験 背景ガンマ線の研究 澤田 龍 MEG コラボーレーション 東京大学素粒子物理国際研究センター 2010 年 9 月 11 日 日本物理学会 2010 年秋季大会 九州工業大学戸畑キャンパス.
Digitization in EMC simulation Dmytro Melnychuk, Soltan Institute for Nuclear Studies, Warsaw, Poland.
PMT Calibration R.Sawada 7/Jan/2007. Time calibration Method was talked at the previous meeting. The problems which was shown before were because I used.
MEG II 実験液体キセノンガンマ線検出器 に向けた再構成法の研究 Development of the event reconstruction method for MEG II liquid xenon detector 小川真治、 他 MEG II 日本物理学会 2015.
Radia Sia Syracuse Univ. 1 RICH 2004 Outline:  The CLEO-III RICH Detector  Physics Requirements  CLEO-III RICH at work… Performance of the CLEO-III.
Collection of Photoelectrons from a CsI Photocathode in Triple GEM Detectors C. Woody B.Azmuon 1, A Caccavano 1, Z.Citron 2, M.Durham 2, T.Hemmick 2, J.Kamin.
06/2006I.Larin PrimEx Collaboration meeting  0 analysis.
Development of a pad interpolation algorithm using charge-sharing.
Kalanand Mishra February 23, Branching Ratio Measurements of Decays D 0  π - π + π 0, D 0  K - K + π 0 Relative to D 0  K - π + π 0 decay Giampiero.
SPring-8 レーザー電子光 ビームラインでの タギング検出器の性能評価 核物理研究センター 三部 勉 LEPS collaboration 日本物理学会 近畿大学 1.レーザー電子光 2.タギング検出器 3.実験セットアップ 4.エネルギー分解能 5.検出効率とバックグラウンドレート.
Comparison of MC and data Abelardo Moralejo Padova.
MEG 実験 2009 液体キセノン検出器の性能 II 西村康宏, 他 MEG コラボレーション 東京大学素粒子物理国際研究セン ター 第 65 回年次大会 岡山大学.
Testbeam analysis Lesya Shchutska. 2 beam telescope ECAL trigger  Prototype: short bars (3×7.35×114 mm 3 ), W absorber, 21 layer, 18 X 0  Readout: Signal.
Paolo Massarotti Kaon meeting March 2007  ±  X    X  Time measurement use neutral vertex only in order to obtain a completely independent.
Photon Transport Monte Carlo September 27, 2004 Matthew Jones/Riei IshizikiPurdue University Overview Physical processes PMT and electronics response Some.
Status of NEWCHOD E.Guschin (INR), S.Kholodenko (IHEP), Yu.Kudenko (INR), I.Mannelli (Pisa), O.Mineev (INR), V.Obraztsov (IHEP), V.Semenov(IHEP), V.Sugonyaev.
Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs Kei Ieki for the MEG-II collaboration 1 II.
Development of UV-sensitive MPPC for upgrade of liquid xenon detector in MEG experiment Daisuke Kaneko, on behalf of the MEG Collaboration µ γ Liquid xenon.
The photomultiplier tubes selection for KM2A electromagnetic particle detectors (EDs) hou chao IHEP The 2nd workshop of air shower detection at high altitudes.
Binomial Distribution Possion Distribution Gaussian Distribution Lorentzian Distribution Error Analysis.
Development of Multi-Pixel Photon Counters (1)
Xiong Zuo IHEP, CAS, for the LHAASO Collaboration
小川真治、 他MEG 第72回年次大会 MEG II 実験液体キセノンガンマ線検出器における取得データサイズ削減手法の開発 Development of the data size reduction method for MEG II liquid.
Fabio, Francesco, Francesco and Nicola INFN and University Bari
Upgrade of LXe gamma-ray detector in MEG experiment
Instrumentation for Colliding Beam Physics 2017
Upgrade of LXe gamma-ray detector in MEG experiment
MEG実験の液体Xe検出器について 東大 ICEPP  森研究室 M1 金子大輔.
Using Single Photons for WIMP Searches at the ILC
md-NUV PET project meeting
Slope measurements from test-beam irradiations
Xiong Zuo IHEP, CAS, for the LHAASO Collaboration
西村美紀(東大) 他 MEGIIコラボレーション 日本物理学会 第73回年次大会(2018年) 東京理科大学(野田キャンパス)
Presentation transcript:

MEG 実験 液体キセノンカロリメータ におけるエネルギー分解能の追究 東大素粒子センター 金子大輔 他 MEG コラボレーション

Contents ・ MEG γ-ray detector ・ What limits E-resolution ? ・ Studied items ・ PMT Gain Stability ・ Photo-cathode effective size ・ Reflection on photo-cathode ・ Summary 2012/9/12 京都産業大学 1

Liquid Xenon Detector ・ 846 2” PMTs immersed in 165K Liquid xenon ・ Reconstruct incident γ-ray from collected VUV scintillation photons. Performance (for signal γ) Efficiency62.8 % Energy resolution (w>2)1.7 % Position resolution (uv, w)5, 6 mm Time resolution67 ps Energy resolution is worse than Monte- Carlo simulation. at run2011, preliminary γ e+e+ 2012/9/12 京都産業大学 2 u v w

How to Get Energy PMTs charge … software filtering integration waveform digitizer # of p.e. u, v, w p.e. 000 p.e. 001 … p.e. 002 Σ of p.e. weighted sum by PMT area energy solid-angle correction non- uniformity correction Gain, QE depth waveform face-factor correction positionfactor adjust absolute scale 2012/9/12 京都産業大学 3 Calibration runs

What is problem ? Total collected photo-electron number is statistically enough photo-electron → 0.45% in σ Actual resolution is 1.0% for Monte-Carlo, 1.7% for data. Result of large prototype test : 1.2% There must be un-understood event-by-event fluctuations ! σ UP MC DATA 2011 Energy resolution mapping 2012/9/12 京都産業大学 4 response function fit function data

Studied items ・ Systematic error of QE estimation ・ Gain non-uniformity in a PMT A : PMT Gain stability ○ gain instability effect to resolution. B : Case of smaller PMT active area ○ if sensitive area were smaller, photon collection would fluctuate more C : Reflection at PMT photo-cathode ○ Dependence of light collection efficiency on the relative position between PMT & conversion point could be enhanced already known not to affect so much (reported in 2012 spring JPS meeting) 2012/9/12 京都産業大学 5

A: Stability of PMT gain この間 4 分 PMT charge Charge from one PMT in LED event fluctuate about 3% in run. That time, I checked only about 10 min of MEG run and only some PMTs. I checked more precisely. For all PMT Evaluate statistical fluctuation. In spring JPS meeting… We are monitoring PMT gain in MEG physics run, by flashing PMT every a few second. 2012/9/12 京都産業大学 6

Calculation of number of photoelectron Calculate mean & σ of N p.e. by fitting with Gaussian. Example PMT 000 Np.e. Average Np.e. for all PMT Average for all PMTs: /9/12 京都産業大学 7 Subtract normal statistical fluctuation assuming Np.e. is distributed in poisson distribution

Result : A Average gain fluctuation is 0.78% in MEG run Statistical error is about % → In other data 0.70% in LED run (beam off), 0.99% in CEX run (pion beam). remainder gain fluctuation σ add This fluctuation hardly worsen total energy resolution, because gain fluctuation is random for each PMT in a event. 2012/9/12 京都産業大学 8

B: How PMT area affect ? If PMT’s cathode were smaller than designed size, this fluctuation would become larger. for example from ・ cathode deterioration ・ effect of B field ・ etc. It is already known that difference of relative position to PMT causes additional fluctuation in photon collection. 2012/9/12 京都産業大学 9

Generated MC d < (PMTsize) ? d hit Event generation : signal γ (52.8MeV) u [cm] v [cm] used area Range : center 18PMT not to see non-uniformity ↓ Radius[cm]Area (ratio) Case % Case % Case % Data2011 charge-exchange calibration (55MeV γ) 2012/9/12 京都産業大学 10 I studied the simple case PMT cathode is concentrically smaller.

Result : B Blue : normal Green : 21.5mm Red : 20.0mm Black : data Resolution of real data is worse than MC, in all depth region. (0.6 ~ 0.8 % in σ up ) It is hard to explain discrepancy between MC & data with PMT’s smaller cathode size, because no visible effect is seen. 2012/9/12 京都産業大学 11 depth [cm] E resolution : σ up [%]

C: Reflection on PMT cathode surface Current MEG Monte-Carlo simulation only consider reflection on quartz window. ↓ introduce reflection on cathode surface HIT 2012/9/12 京都産業大学 12 solid:cathode refl.black: detect dashed:no cathode refl.red: reflect green: absorb liquid xenon n x quartz window n q 1.610, L abs 21mm photo-cathode (sensitive detector) Rn c 1.920, In c

Result : C Energy resolution become worse in all depth by 0.2 ~ 0.5%. This can’t explain all discrepancy between MC & data, but is not ignorable part if this is true. Photon distribution got little closer to data. Parameters were not good ? ↓ 2012/9/12 京都産業大学 13 Blue : w/o reflection Green : + reflection Red : MEG data

Summary I studied energy resolution of MEG γ-ray detector. Following results were obtained, ・ PMT gain is stable enough in MEG data taking. ・ PMT cathode size does not affect resolution. ・ Reflection on cathode surface can cause a part of discrepancy between MC & data. Prospects 2012/9/12 京都産業大学 14 ・ Understand mechanism how reflection affects resolution. ・ Optimize optical parameters of PMT material. ・ Seek another cause of E-resolution discrepancy. ・ Improve current energy analysis method. ・ Use for upgraded detector.

おわり 2012/9/12 京都産業大学 15

オマケ 2012/9/12 京都産業大学 16

Calculate mean & σ of Np.e. by fitting histogram. Analyzed data Black: MEG physics data Red: Charge exchange calibration run Blue: LED gain calibration run Example PMT 000 Np.e. Average photo electrons MEG: CEX: LED: /9/12 京都産業大学 17

Fluctuation by Position Left : LED nphe mean Right Top : RMS (relative) Right Bottom : Subtracted Statistic 2012/9/12 京都産業大学 18

B high low or 0? ※ this is imaginary picture B dependence of total gain come from position dependence of gain (collection efficiency) ? 2012/9/12 京都産業大学 19

Photon collection (project to U direction) select event here Notice Data have lower peak & longer tail. Cathode reflection is hidden due to small statistics? From where can I cut summation for energy calculation? 2012/9/12 京都産業大学 20

Introduction of photo-cathode reflection Black: normal MC Red : cathode reflection Average Nsum2 normal : 3.365e5 reflection : 2.387e5 No obvious difference except nearest 3 rows. Is this affect to energy resolution? ↑checking… 44.51% 3.28%0.37% % 2012/9/12 京都産業大学 21

2012/9/12 京都産業大学 22 ratio of photo electron Blue : normal MC Green : data Ratio of PMTs near to conversion point is smaller in data. Difference in photon distribution between data & MC can be explained from this? → PMT row