CSC 778 Fall 2007 Routing & Wavelength Assignment Vinod Damle Hardik Thakker.

Slides:



Advertisements
Similar presentations
Ch. 12 Routing in Switched Networks
Advertisements

In the name of God, The Beneficent, The Merciful
The strength of routing Schemes. Main issues Eliminating the buzz: Are there real differences between forwarding schemes: OSPF vs. MPLS? Can we quantify.
Ch. 12 Routing in Switched Networks Routing in Packet Switched Networks Routing Algorithm Requirements –Correctness –Simplicity –Robustness--the.
Data and Computer Communications
Lecture 4. Topics covered in last lecture Multistage Switching (Clos Network) Architecture of Clos Network Routing in Clos Network Blocking Rearranging.
CS6800 Advanced Theory of Computation
1 An Adaptive GA for Multi Objective Flexible Manufacturing Systems A. Younes, H. Ghenniwa, S. Areibi uoguelph.ca.
Novembro 2003 Tabu search heuristic for partition coloring1/29 XXXV SBPO XXXV SBPO Natal, 4-7 de novembro de 2003 A Tabu Search Heuristic for Partition.
Data and Computer Communications Ninth Edition by William Stallings Chapter 12 – Routing in Switched Data Networks Data and Computer Communications, Ninth.
Optical Networks BM-UC Davis122 Part III Wide-Area (Wavelength-Routed) Optical Networks – 1.Virtual Topology Design 2.Wavelength Conversion 3.Control and.
1 Routing and Wavelength Assignment in Wavelength Routing Networks.
Routing and Wavelength Assignment Approaches for Wavelength-Routed Optical WDM Networks.
SMUCSE 8344 Optical Networks Introduction. SMUCSE 8344 Why Optical? Bandwidth Low cost ($0.30/yard) Extremely low error rate ( vs for copper.
CWI PNA2, Reading Seminar, Presented by Yoni Nazarathy EURANDOM and the Dept. of Mechanical Engineering, TU/e Eindhoven September 17, 2009 An Assortment.
Lecture: 4 WDM Networks Design & Operation
A Waveband Switching Architecture and Algorithm for Dynamic Traffic IEEE Communications Letters, Vol.7, No.8, August 2003 Xiaojun Cao, Vishal Anand, Chunming.
Wavelength Assignment in Optical Network Design Team 6: Lisa Zhang (Mentor) Brendan Farrell, Yi Huang, Mark Iwen, Ting Wang, Jintong Zheng Progress Report.
Beneficial Caching in Mobile Ad Hoc Networks Bin Tang, Samir Das, Himanshu Gupta Computer Science Department Stony Brook University.
EE 4272Spring, 2003 Chapter 10 Packet Switching Packet Switching Principles  Switching Techniques  Packet Size  Comparison of Circuit Switching & Packet.
December 20, 2004MPLS: TE and Restoration1 MPLS: Traffic Engineering and Restoration Routing Zartash Afzal Uzmi Computer Science and Engineering Lahore.
Traffic Grooming in WDM Networks Wang Yao. WDM Technology increases the transmission capacity of optical fibers allows simultaneously transmission of.
PROFITABLE CONNECTION ASSIGNMENT IN ALL OPTICAL WDM NETWORKS VISHAL ANAND LANDER (Lab. for Advanced Network Design, Evaluation and Research) In collaboration.
ECS H. Zang and B. Mukherjee, UC Davis 1 Routing and Wavelength Assignment for Wavelength-Routed WDM Networks  Combined routing and wavelength.
High Throughput Route Selection in Multi-Rate Ad Hoc Wireless Networks Dr. Baruch Awerbuch, David Holmer, and Herbert Rubens Johns Hopkins University Department.
The Research of Applying Random Early Blocking strategy to Dynamic Lightpath Routing National Yunlin University of Science & Technology.
Distributed Quality-of-Service Routing of Best Constrained Shortest Paths. Abdelhamid MELLOUK, Said HOCEINI, Farid BAGUENINE, Mustapha CHEURFA Computers.
Internet Traffic Engineering by Optimizing OSPF Weights Bernard Fortz (Universit é Libre de Bruxelles) Mikkel Thorup (AT&T Labs-Research) Presented by.
CSC 778 Presentation Waveband Switching Neil D’souza Jonathan Grice.
Profile-Based Topology Control and Routing of Bandwidth-Guaranteed Flows in Wireless Optical Backbone Networks A. Kashyap, M.K. Khandani, K. Lee, M. Shayman.
Genetic Algorithm for Multicast in WDM Networks Der-Rong Din.
Network Aware Resource Allocation in Distributed Clouds.
1 Protection Mechanisms for Optical WDM Networks based on Wavelength Converter Multiplexing and Backup Path Relocation Techniques Sunil Gowda and Krishna.
9 1 SIT  Today, there is a general consensus that in near future wide area networks (WAN)(such as, a nation wide backbone network) will be based on.
Optimization of Wavelength Assignment for QoS Multicast in WDM Networks Xiao-Hua Jia, Ding-Zhu Du, Xiao-Dong Hu, Man-Kei Lee, and Jun Gu, IEEE TRANSACTIONS.
Chapter 11 Wavelength Conversion. To establish a lightpath, we require that the same wavelength be allocated on all the links in the path. This requirement.
Algorithms for Allocating Wavelength Converters in All-Optical Networks Authors: Goaxi Xiao and Yiu-Wing Leung Presented by: Douglas L. Potts CEG 790 Summer.
Wavelength Assignment in Waveband Switching Networks with Wavelength Conversion Xiaojun Cao; Chunming Qiao; Anand, V. Jikai LI GLOBECOM '04. IEEE Volume.
Presenter: Jonathan Murphy On Adaptive Routing in Wavelength-Routed Networks Authors: Ching-Fang Hsu Te-Lung Liu Nen-Fu Huang.
Logical Topology Design
Minimax Open Shortest Path First (OSPF) Routing Algorithms in Networks Supporting the SMDS Service Frank Yeong-Sung Lin ( 林永松 ) Information Management.
Optimization of Wavelength Assignment for QoS Multicast in WDM Networks Xiao-Hua Jia, Ding-Zhu Du, Xiao-Dong Hu, Man-Kei Lee, and Jun Gu, IEEE TRANSACTIONS.
Examination Committee: Dr. Poompat Saengudomlert (Chairperson) Assoc. Prof. Tapio Erke Dr. R.M.A.P. Rajatheva 1 Telecommunications FoS Asian Institute.
Data Communications and Networking Chapter 11 Routing in Switched Networks References: Book Chapters 12.1, 12.3 Data and Computer Communications, 8th edition.
1 Optical Packet Switching Techniques Walter Picco MS Thesis Defense December 2001 Fabio Neri, Marco Ajmone Marsan Telecommunication Networks Group
1 Multicasting in a Class of Multicast-Capable WDM Networks From: Y. Wang and Y. Yang, Journal of Lightwave Technology, vol. 20, No. 3, Mar From:
Mobile Agent Migration Problem Yingyue Xu. Energy efficiency requirement of sensor networks Mobile agent computing paradigm Data fusion, distributed processing.
Capacity Enhancement with Relay Station Placement in Wireless Cooperative Networks Bin Lin1, Mehri Mehrjoo, Pin-Han Ho, Liang-Liang Xie and Xuemin (Sherman)
Introduction to Genetic Algorithms. Genetic Algorithms We’ve covered enough material that we can write programs that use genetic algorithms! –More advanced.
10/6/2003Kevin Su Traffic Grooming for Survivable WDM Networks – Shared Protection Kevin Su University of Texas at San Antonio.
1 Presented by Sarbagya Buddhacharya. 2 Increasing bandwidth demand in telecommunication networks is satisfied by WDM networks. Dimensioning of WDM networks.
Traffic grooming in WDM Networks Dynamic Traffic Grooming in WDM Mesh Networks Using a Novel Graph Model by Hongyue Zhu, Hui Zang, Keyao Zhu, and Biswanath.
1 An Arc-Path Model for OSPF Weight Setting Problem Dr.Jeffery Kennington Anusha Madhavan.
1 Dynamic RWA Connection requests arrive sequentially. Setup a lightpath when a connection request arrives and teardown the lightpath when a connection.
Load Balanced Link Reversal Routing in Mobile Wireless Ad Hoc Networks Nabhendra Bisnik, Alhussein Abouzeid ECSE Department RPI Costas Busch CSCI Department.
Optimal Design of Survivable Mesh Networks Based on Line Switched WDM Self-Healing Rings IEEE/ACM Transactions on Networking, Vol 11, NO.3, June,2003 Andrea.
An Optimization Model for Placement of Wavelength Converters to Minimize Blocking Probability in WDM Networks Authored by: SuixiangGao,XiaohuaJia Authored.
Survivability in IP over WDM networks YINGHUA YE and SUDHIR DIXIT Nokia Research Center, Burlington, Massachusetts.
Artificial Intelligence By Mr. Ejaz CIIT Sahiwal Evolutionary Computation.
Improving OBS Efficiency Li, Shuo, Meiqian Wang. Eric W. M. Wong, Moshe Zukerman City University of Hong Kong 1.
William Stallings Data and Computer Communications
Constraint-Based Routing
A Study of Group-Tree Matching in Large Scale Group Communications
Isabella Cerutti, Andrea Fumagalli, Sonal Sheth
Distributed Control Plane
High Throughput Route Selection in Multi-Rate Ad Hoc Wireless Networks
Data and Computer Communications
The University of Adelaide, School of Computer Science
Md. Tanveer Anwar University of Arkansas
Chapter 10 RWA 2019/5/9.
Presentation transcript:

CSC 778 Fall 2007 Routing & Wavelength Assignment Vinod Damle Hardik Thakker

CSC 778 Fall 2007 Agenda Introduction Problem Definition/Sub-division RCL Heuristic Dynamic RWA Conclusion & Questions

CSC 778 Fall 2007 RWA Lightpath (LP) – all optical WDM channel RWA – with a given set of connection requests, set up LPs by routing and assign a λ to each connection Connection Requests – Static & Dynamic Static – all requests known in advance, usually RWA is carried out offline - SLE Dynamic – LP is set up as each connection request arrives, and released after a finite time - DLE

CSC 778 Fall 2007 Links -> Fibers(1..n) -> λs (1..n) Wavelength continuity constraint may/may not exist Network Topology & Connections Link Fiber Wavelength A C B D c1 c2 c3 A->D C->D B->C AB CD c1A->D c2C->D c3B->C SLE DLE

CSC 778 Fall 2007 RWA RWA with λ conversion –Full capacity λ conversion: equivalent to circuit switching! (No WA, just routing) –However, full capacity λ conversion is expensive –Hence limited λ conversion is employed If select nodes have this capability – which nodes to place them? Share converters between output ports Limited range λ conversion

CSC 778 Fall 2007 RWA RWA dealt with separately as 2 sub-problems, Routing and Wavelength Assignment SLE – Generally treated as an ILP formulation –Objective: Minimize number of λs to set up given LPs or Maximize number of LPs for given λs Routing sub-problem –Fixed routing –Fixed-Alternate routing –Adaptive routing Shortest cost path routing

CSC 778 Fall 2007 RWA After LP route is determined, assign λ – Graph coloring –Given a set of LPs and their routes, assign λ so that no 2 LPs on the same fiber have the same λ In DLE, objective is to minimize blocking probability with a fixed physical topology (fibers, λs)

CSC 778 Fall 2007 Wavelength Assignment for Dynamic Traffic in Multi-Fiber WDM Networks Xijun Zhang Chunming Qiao

CSC 778 Fall 2007 RCL On-line wavelength assignment algorithm for dynamic traffic For a fixed physical topology, aims to minimize blocking probability Assumption –No wavelength converters –Route between any source destination pair is pre- selected –Network is at a particular state where set of connections has already been established and λs are already assigned

CSC 778 Fall 2007 Wavelength Path Capacity (WPC) We need a measure for Blocking Probability Link Capacity of a link L C (l, λ) – Number of fibers on which λ is available on link ‘l’ WPC of a path ‘p’ P C (p, λ) - link capacity of most congested link along the path (min of link capacities). LP can be established on a λ only if WPC > 0 Ex – 3 links (2 fibers each), 1 λ. A BC D WPC (p) = min ( 2, 1, 2) = 1

CSC 778 Fall 2007 Λ Assignment Strategies Objective – Establish LP on a particular λ such that blocking probability is minimized First fit – Assign to least λ index available Max Sum – Assign a λ which maximizes ‘residual WPC’ on all possible paths & wavelengths - Σ p Σ λ P C ’ (p, λ) Max Sum minimizes total WPC Loss –Minimize Σ p [P C (p, λ) – P C ’ (p, λ)] where P C and P C ’ are WPC before and after λ assignment

CSC 778 Fall 2007 RCL - Motivation λ0λ0 λ1λ1 λ2λ2 λ3λ3 P2: 1->5 P3: 3->6 P4: 0->3 P1: 2->4 P1: (2, 4) P2: (1, 5)P3: (3, 6)P4: (0, 3) λ3λ3100 Λ2Λ2110 λ1λ1010 λ0λ0001 WPC of Paths P2: (1, 5)P3: (3, 6)P4: (0, 3) λ3λ3100 Λ2Λ2110 λ1λ1010 λ0λ0001 WPC Loss of PathsTotal Loss

CSC 778 Fall 2007 RCL Every entry in table must be weighted by some factor. Factor evaluates availability of an alternate λ for a particular path Define RCL (Relative Capacity Loss) - Ratio –R c (p, λ * ) = [P C (p, λ * ) – P C ’ (p, λ * )] Σ λ P C (p, λ) Ratio of WPC Loss of ‘p’ on λ * over the total WPC of ‘p’ on all wavelengths

CSC 778 Fall 2007 RCL Algorithm Algorithm aims to minimize effect of choosing a particular λ * on the paths which share common links Choose a λ * such that the sum of RCLs of all the neighboring paths (paths which have links in common with the current path request) is minimized –Choose λ * where Σ p € {Neighbors of p’} R C (p, λ * ) is minimized Non-Uniform Traffic: attach a weight to each R C and compute λ * P2: (1, 5)P3: (3, 6)P4: (0, 3) λ3λ3½0/20/1 Λ2Λ2½½ λ1λ10/2½0/1 λ0λ00/2 1/1 Total RCL 1/2 1 1

CSC 778 Fall 2007 RCL - Performance RWA with full λ conversion is considered optimal. Non Optimality Factor (NOF) defined as difference in blocking probability between say ‘RCL’, and the above To compare 2 different wavelength assignment algorithms – ‘A’ and ‘B’, define improvement ratio as {NOF(A) – NOF(B)}/NOF(A) MS vs RCL (Ref: Zhang & Qiao, Wavelength assignment for dynamic traffic in multi-fiber WDM networks)

CSC 778 Fall 2007 RCL - Drawbacks Longer paths have higher probability of getting blocked (Inherent to such schemes) Requires fixed routing – However, this could be countered with a scheme where RCL is applied to a set of pre-calculated routes between a source/destination pair

CSC 778 Fall 2007 Dynamic Routing & Wavelength Assignment by means of Genetic Algorithms

CSC 778 Fall 2007 Problem –Dynamic Routing and Wavelength Assignment (DRWA) of lightpaths in optical networks without wavelength converters Objective –To minimize the call blocking probability and reduce computation time Proposed Solution –Genetic algorithm to solve DRWA quickly and effectively an also provide fairness Introduction

CSC 778 Fall 2007 DRWA Algorithms Common Approach – Fixed Alternate Routing –Routing and Wavelength Assignment performed separately –Route chosen from pre-calculated set –Call blocked if no wavelength available along the pre- computed routes Advantages –Computation time of algorithm is low Disadvantages –Blocking Performance is not as good as the Adaptive routing algorithms

CSC 778 Fall 2007 DRWA Algorithms (..contd) AUR 1 – Adaptive Unconstrained Routing –Do not use a set of pre-computed routes –Dynamically search for shortest path using network information at that instant Advantages –Blocking performance better than constrained routing Disadvantages –Computationally more complex than constrained approach 1 Adaptive Wavelength Routing in All-Optical Networks; Ahmed Mokhtar and Murat Azizoglu

CSC 778 Fall 2007 Fairness Aim: All lightpath request should have low blocking probability independent of the location of end nodes Multi-hop connections are harder to establish than single-hop connections Network topology and traffic pattern result in congested links –Light Paths on congested links will be blocked Depending on the s-d pair –Individual blocking probability varies –High degree of unfairness

CSC 778 Fall 2007 Genetic Algorithm (GA) Search Algorithms based on mechanics of natural selection and natural genetics Works on individuals representing solution to the problem –E.g. finding best route from s-d, individuals in this case will be all routes from s-d Genetic Operators –Crossover - imitates the natural reproduction –Mutation – changes the genetic material –Reduction – selects the fittest individuals

CSC 778 Fall 2007 GRWA Run each time a lightpath is requested Coding of a route –( ) & ( ) Evolution –Produces new generation which is hopefully fitter than the current generation

CSC 778 Fall 2007 GRWA (..contd) Step1: Generate initial population P of randomly generated routes Step2: Continue evolution until stopping criterion is met –Evolution over a number of iterations Crossover stage Mutation stage Reduction stage Step3: Return the best individual found

CSC 778 Fall 2007 Generation of Random Routes Find a route from s = 0 to d =

CSC 778 Fall 2007 Genetic Operators Crossover Operator –Applied to pair of routes that have one node on common

CSC 778 Fall 2007 Genetic Operators (..contd) Mutation Operator –New route is generated from a node selected randomly from a current route –Route from source to mutation node is untouched –Applied to all the individuals whose fitness value is below a threshold Parent route Child route Mutation Node

CSC 778 Fall 2007 Genetic Operators (..contd) Reduction Operator –Select P fittest individuals from both parents and children

CSC 778 Fall 2007 Fitness Function Determines goodness of individual Performs Wavelength Assignment Cost of light path –No. of links traversed (i.e. number of hops) –Infinite when no wavelengths are available Select the lowest indexed wavelength among the available wavelengths Fitness = (cost) -1

CSC 778 Fall 2007 Stopping Criterion G = No. of generations S = satisfactory cost value –Initially set to minimum number of hops between s-d –Value increased by 1 after each iteration Evolution stops in following conditions –Route with cost <= S is found –After G generations have evolved

CSC 778 Fall 2007 Fair - GRWA Adapt the values of ‘G’ and ‘P’ to the difficulty in establishing the connection G, P will be higher for difficult connection Specific values associated with each s-d pair Execute the genetic algorithm for (G s-d, P s-d ) to achieve equal blocking probability Combines advantages of fixed routing and adaptive routing –Uses pre-computed set of routes –If not available then uses GWRA

CSC 778 Fall 2007 Performance Evaluation Simulation –Arrival of light path requests independent Poisson process –Arrival Rate = Call holding time = –s-d pair selected randomly acc. uniform distribution

CSC 778 Fall 2007 Performance Evaluation (..contd) Probability of fulfilling the stopping criterion

CSC 778 Fall 2007 Performance Evaluation (..contd) Comparison of GRWA with AUR-E & Fair-GRWA

CSC 778 Fall 2007 Questions ?