2002 by Jim X. Chen: 1 Understand brightness, intensity, eye characteristics, and gamma correction, halftone technology,

Slides:



Advertisements
Similar presentations
What is Color? Color is related to the wavelength of light. If a color corresponds to one particular wavelength, this is called spectral color. =600 nm.
Advertisements

CS 445 / 645 Introduction to Computer Graphics Lecture 13 Color Color.
Introduction to Computer Graphics ColorColor. Specifying Color Color perception usually involves three quantities: Hue: Distinguishes between colors like.
Color To understand how to make realistic images, we need a basic understanding of the physics and physiology of vision.
Color Image Processing
Achromatic and Colored Light CS 288 9/17/1998 Vic.
School of Computing Science Simon Fraser University
CS 4731: Computer Graphics Lecture 24: Color Science
SWE 423: Multimedia Systems Chapter 4: Graphics and Images (2)
© 2002 by Yu Hen Hu 1 ECE533 Digital Image Processing Color Imaging.
What is color for?.
Color Representation Lecture 3 CIEXYZ Color Space CIE Chromaticity Space HSL,HSV,LUV,CIELab X Z Y.
Display Issues Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico.
1 CSCE441: Computer Graphics: Color Models Jinxiang Chai.
CS559-Computer Graphics Copyright Stephen Chenney Color Recap The physical description of color is as a spectrum: the intensity of light at each wavelength.
Why Care About Color? Accurate color reproduction is commercially valuable - e.g. Kodak yellow, painting a house Color reproduction problems increased.
Chapter 9: Color What is color? Color mixtures –Intensity-distribution curves –Additive Mixing –Partitive Mixing Specifying colors –RGB Color –Chromaticity.
Color Models AM Radio FM Radio + TV Microwave Infrared Ultraviolet Visible.
Light, Color and Imaging. Light The Electromagnetic Spectrum: E = h.
9/14/04© University of Wisconsin, CS559 Spring 2004 Last Time Intensity perception – the importance of ratios Dynamic Range – what it means and some of.
Digital Multimedia, 2nd edition Nigel Chapman & Jenny Chapman Chapter 6 This presentation © 2004, MacAvon Media Productions Colour.
Course Website: Digital Image Processing Colour Image Processing.
Digital Image Processing Colour Image Processing.
CS 376 Introduction to Computer Graphics 01 / 26 / 2007 Instructor: Michael Eckmann.
2001 by Jim X. Chen: 1 The purpose of a color model is to allow convenient specification of colors within some color gamut.
Color Models and Color Applications
1 Color vision and representation S M L.
COLLEGE OF ENGINEERING UNIVERSITY OF PORTO COMPUTER GRAPHICS AND INTERFACES / GRAPHICS SYSTEMS JGB / AAS Light and Color Graphics Systems / Computer.
Chapter 3: Colorimetry How to measure or specify color? Color dictionary?
CS 445 / 645: Introductory Computer Graphics Color.
Graphics Graphics Korea University cgvr.korea.ac.kr Raster Graphics 고려대학교 컴퓨터 그래픽스 연구실.
1 © 2010 Cengage Learning Engineering. All Rights Reserved. 1 Introduction to Digital Image Processing with MATLAB ® Asia Edition McAndrew ‧ Wang ‧ Tseng.
Topic 5 - Imaging Mapping - II DIGITAL IMAGE PROCESSING Course 3624 Department of Physics and Astronomy Professor Bob Warwick.
Color. Contents Light and color The visible light spectrum Primary and secondary colors Color spaces –RGB, CMY, YIQ, HLS, CIE –CIE XYZ, CIE xyY and CIE.
Week 6 Colour. 2 Overview By the end of this lecture you will be familiar with: –Human visual system –Foundations of light and colour –HSV and user-oriented.
Color Theory ‣ What is color? ‣ How do we perceive it? ‣ How do we describe and match colors? ‣ Color spaces.
1 Introduction to Computer Graphics with WebGL Ed Angel Professor Emeritus of Computer Science Founding Director, Arts, Research, Technology and Science.
CSC361/ Digital Media Burg/Wong
COLORCOLOR Angel 1.4 and 2.4 J. Lindblad
CS6825: Color 2 Light and Color Light is electromagnetic radiation Light is electromagnetic radiation Visible light: nm. range Visible light:
CS 376 Introduction to Computer Graphics 01 / 24 / 2007 Instructor: Michael Eckmann.
Graphics Lecture 4: Slide 1 Interactive Computer Graphics Lecture 4: Colour.
A color model is a specification of a 3D color co-ordinate system and a visible subset in the co-ordinate System within all colors in a particular color.
Mixing the broad distributions of green and red yields yellow. Although the resulting spectral distribution is very different from spectral yellow. If.
Three-Receptor Model Designing a system that can individually display thousands of colors is very difficult Instead, colors can be reproduced by mixing.
1 CSCE441: Computer Graphics: Color Models Jinxiang Chai.
Introduction to Computer Graphics
Color Models. Color models,cont’d Different meanings of color: painting wavelength of visible light human eye perception.
Greg Humphreys CS445: Intro Graphics University of Virginia, Fall 2003 Raster Graphics and Color Greg Humphreys University of Virginia CS 445, Fall 2003.
1 CSCE441: Computer Graphics: Color Models Jinxiang Chai.
CS-321 Dr. Mark L. Hornick 1 Color Perception. CS-321 Dr. Mark L. Hornick 2 Color Perception.
David Luebke 1 2/5/2016 Color CS 445/645 Introduction to Computer Graphics David Luebke, Spring 2003.
Chapter 4: Color in Image and Video
Color Measurement and Reproduction Eric Dubois. How Can We Specify a Color Numerically? What measurements do we need to take of a colored light to uniquely.
1 of 32 Computer Graphics Color. 2 of 32 Basics Of Color elements of color:
COMPUTER GRAPHICS CS 482 – FALL 2016 CHAPTER 28 COLOR COLOR PERCEPTION CHROMATICITY COLOR MODELS COLOR INTERPOLATION.
Color Models Light property Color models.
Half Toning Dithering RGB CMYK Models
Display Issues Ed Angel
Color Image Processing
Color Image Processing
(c) University of Wisconsin, CS559 Spring 2002
Chapter 6: Color Image Processing
Colour Theory Fundamentals
Introduction to Computer Graphics with WebGL
Color Representation Although we can differentiate a hundred different grey-levels, we can easily differentiate thousands of colors.
Slides taken from Scott Schaefer
Color Model By : Mustafa Salam.
Color Models l Ultraviolet Infrared 10 Microwave 10
Color Theory What is color? How do we perceive it?
Presentation transcript:

by Jim X. Chen: 1 Understand brightness, intensity, eye characteristics, and gamma correction, halftone technology, Understand general usage of color

by Jim X. Chen: 2 Quantity of light physics sense of energy -- intensity and luminance psychological sense (perceived intensity) -- brightness Intensity and Brightness They are related but are not the same. Checkout the 3- way switch, you will go from 50watt to 100, and 100 to 150, but the brightness are levels are not even. ACHROMATIC LIGHT (Grayscale)

by Jim X. Chen: Gamma correction Characteristic of the eye: it is sensitive to ratios of intensity levels rather than to absolute values of intensity. On a brightness scale, the differences between intensities of 0.1 and 0.11 and of 0.5 and 0.55 are equal. Brightness is called perceived intensity. Sometimes, without confusion, simply “intensity”. 3

by Jim X. Chen: The minimum attainable intensity I 0 for a CRT is anywhere from about 1/200 to 1/40 of the maximum intensity of To find 256 perceived intensities starting from lowest I 0 to a maximum of 1: And in general for n+1 intensities:

by Jim X. Chen: 5 Dynamic range -- the ratio between the maximum and minimum intensities (1/I 0 ), the bigger the better. The intensity is related to the number of electrons N in a CRT I = kN  where k &  are constants;  is between 2.2 to 2.5 N is proportional to V (the control-grid voltage), so for another constant K: I = KV 

by Jim X. Chen: 6 Given a desired intensity I, we can determine the voltage (intensity) needed in the hardware: V j = ROUND((I j /K) 1/  ) And we know that I = KV  ; V = (I/K)  Therefore, gamma correction means:

by Jim X. Chen: 7 The values of K, , and I 0 depend on the CRT in use, so in practice the look-up table is loaded by a method based on actual measurement of intensities. Use of the look-up table in this general manner is also called gamma correction. If the display has hardware gamma correction, then I j rather than V j is placed in entry j of the look-up table or refresh buffer.

by Jim X. Chen: 8 How many intensities are enough? when r < 1.01, the eye cannot distinguish between intensities I j,I j+1. Thus the appropriate value for n, the number of intensity levels: r = 1.01 = (1/ I 0 ) 1/n It depends on the lowest intensityvalue I 0. If I 0 = 1/200, n = log = 532

by Jim X. Chen: 9 Halftone Approximation Spatial integration -- if we view a very small area from a sufficiently large viewing distance, our eyes average fine detail within the area and record only the overall intensity. An n*n group of bi-level pixels can provide n 2 +1 intensity levels using halftoning technique. It is a trade-off between spatial resolution and intensity resolution.

by Jim X. Chen: The pixel patterns to approximate the halftones must be designed not to introduce visual artifacts in an area of identical intensity values: a) form agrowth sequence so that any pixel intensified for intensity level j is also intensified for all levels k>j. b) The patterns must grow outward from the center. c) For certain hardware system, all pixels that are “on” must be adjacent to other “on” pixels.

by Jim X. Chen: 11 Halftone approximation is not limited to bi- level displays. For each point, we can have Multiple level of intensities. Error diffusion: the error is added to the values of the four image-array pixels to the right of and below the pixel in question (7/16 of the error to the pixel to the right, 3/16 to the pixel below and to the left, 5/16 to the pixel immediately below, and 1/16 to the pixel below and to the right.) Dither matrix: to display an intensity I, we turn on all pixels whose values are < I

by Jim X. Chen: CHROMATIC LIGHT Discussions of color perception: Hue -- distinguishes among colors such as red, green, and yellow. Saturation -- refers to how far color is from a gray of equal intensity. Red is highly saturated; pink is relatively unsaturated; unsaturated colors include more white light than do the vivid, saturated colors. Brightness (Lightness) -- perceived intensity In graphic design profession, colors are specified by matching to printed color samples.

by Jim X. Chen: The percentage of pigments that must be mixed to match a color can be used as a color specification. tints -- results from adding white pigment to a pure pigment shade -- comes from adding a black pigment to a pure pigment tone -- is the consequence of adding both black and white pigments to a pure pigment “Pure” color Shades Black White Grays tints Artists often specify color as different tints, shades, and tones of saturated, or pure, pigments (subjective).

by Jim X. Chen: The above color specifications are subjective: human observers’ judgements, the lighting, the size of the sample, the surrounding color, etc. Light is electromagnetic energy in the 400- to 700-nm wavelength part of the spectrum, which is perceived as the colors from violet through indigo, blue, green, yellow, and orange to red. The amount of energy present at each wavelength is represented by a spectral energy distribution.

by Jim X. Chen: A quantitative way of specifying color: colorimetry The above wavelength and energy distribution corresponds to a light. The distribution represents an infinity of numbers, one for each wavelength in the visible spectrum. A pure color is 100% saturated, containing no white light. White light and grays are 0% saturated, containing no color of any dominant wavelength.) Dominant wavelength -- is the wavelength of the color we “see”; corresponds to the perceptual notion of hue Excitation purity -- corresponds to the saturation of the color Luminance -- corresponds to the intensity (brightness, lightness)

by Jim X. Chen: We can describe the visual effect of any spectral distribution by dominant wavelength, excitation purity, and luminance. e1=e2: excitation purity=0; e1=0: excitation purity=100%. The dominant wavelength may not be the one whose component in the spectral distribution is largest. Two spectral energy distributions that look the same are called metamers.

by Jim X. Chen: Tristimulus theory of color perception: the retina has 3 kinds of color sensors (cones), with peak sensitivity to R, G, or B lights

by Jim X. Chen: The luminous-efficiency function, the eye’s response to light of constant luminance, as the dominant wavelength is varied from 400 to 700: our peak sensitivity is to yellow-green light of wavelength around 550. Tristimulus theory of color perception: the retina has 3 kinds of color sensors (cones), with peak sensitivity to R, G, or B lights

by Jim X. Chen: A negative value means if one of the primaries is added to the color sample, the sample (after addition) can then be matched by a mixture of the other two primaries. Colors can be specified by positively weighted sums of red, green, and blue (the so-called primary colors). This notion is almost true.

by Jim X. Chen: Certain colors cannot be produced by RGB mixes, and hence cannot be shown on an CRT. Our eye can distinguish side-by-side colors. When colors differ only in hue, the wavelength between just noticeably different colors varies (mostly within 4 nm)  nm   nm  2 Wavelength Can’t tell the difference Very distinguishable

by Jim X. Chen: Color Measurement Any color can be matched using a combination of three “primaries”. The primaries are not necessarily red, green, and blue. Any three different colors can be used. The range of colors that can be produced from a given set of primaries is the gamut.

by Jim X. Chen: The CIE Chromaticity Diagram In 1931, the Commission Internationale de l’Eclairage (CIE) defined three matching primaries, called X, Y, Z, to replace the RGB.

by Jim X. Chen: Color standard CIE (Commission Internationale d’Éclairage) –Primaries chosen for mathematical properties: do not actually correspond to colors. These “virtual” colors X, Y, and Z are called tristimulus values. –Y is the same as luminance

by Jim X. Chen: The primaries can be used to match, with only positive weights, all the colors we can see. Y matches the luminous-efficiency function The CIE chromaticity diagram, the projection onto the (X,Y) plane of the X+Y+Z=1 plane Chromaticity values depend only on dominant wavelength and saturation, and are independent of the amount of luminous energy (luminance). The amounts of X, Y, and Z primaries needed to match a color with a spectral energy distribution P( ), are: k is a constant chosen according to the engery distribution P

by Jim X. Chen: For every wavelength in spectrum, calculate (X,Y,Z) from CIE color matching functions From (X,Y,Z), calculate (x, y) Plot (x,y) for all wavelengths in spectrum Generates a horseshoe shaped diagram –All physical colors lie inside the horseshoe

by Jim X. Chen: Chromaticity Diagram

by Jim X. Chen: Artist ’ s Rendition of Chromaticity Diagram All physical colors inside or on boundary Monochromatic wavelengths on boundary White light near (x, y) = (1/3, 1/3)

by Jim X. Chen: “ Barycentric ” Color System I.e., center of gravity –2 colors: P and Q –Combine P and Q in different amounts –Can generate any color on straight line connecting P and Q

by Jim X. Chen: Dominant Wavelength and Purity Dominant wavelength –Draw line from white point through the (x,y) point –Extend line to boundary  D Purity –Percentage of distance from white point to edge. –Purity is 0% at white point –Purity is 100% at boundary

by Jim X. Chen: Dominant Wavelength Example White point at (0.33, 0.33) (x,y) = (0.2, 0.6) Draw line from white point through point Extend it to boundary D = 515 nm Purity  55% 45% white light + 55% 515 nm light

by Jim X. Chen: Complementary Wavelength P and Q are complementary Line passes through white point I.e., combination of light from P and Q can give white

by Jim X. Chen: Color Gamuts Any three colors form a triangle Combinations of 3 colors must lie inside triangle. –Why? Physical Region

by Jim X. Chen: Color Gamuts and Color Reproduction Best color reproduction –Use biggest color gamut –True for all media, print, monitor, film, slides No 3 primaries can reproduce human vision Human Vision

by Jim X. Chen: The interior and boundary of the horseshoe-shaped region represent all visible chromaticity values. (All perceivable colors in 3D with the same chromaticity but different luminances map into the same point within this region in 2D.) The 100% spectrally pure colors of the spectrum are on the curved part of the boundary. A standard white light, meant to approximate sunlight, is formally defined by a light source illuminant C, marked by the center dot.

by Jim X. Chen: It allows us to measure the dominant wavelength and excitation purity of any color by matching the color with a mixture of the three CIE primaries. A=B+C; AC/BC is the excitation purity of A; B is the dominant wavelength Complementary colors are those that can be mixed to produce white light (D and E). The CIE chromaticity diagram is useful in many ways:

by Jim X. Chen: Nonspectral F, no dominant wavelength; B is the complement dominant wavelength. CF/CG is the excitation purity. Take a flat spectral distribution and delete some of the light at frequency B, the resulting color will be perceived as F. The CIE chromaticity diagram is useful in many ways:

by Jim X. Chen: Color gamuts (ranges), show the effect of adding colors together. I and J can be added to produce color between I and J; A third color K can be used with I and J to produce the gamut of all colors in triangle IJK. The CIE chromaticity diagram is useful in many ways:

by Jim X. Chen: Examples of Gamuts