CM2007 Lecture 3. Background Correction A baseline spectrum of the solvent must be obtained in order to subtract from the spectrum of the solvent + analyte.

Slides:



Advertisements
Similar presentations
SPECTROSCOPY.
Advertisements

UV / visible Spectroscopy
17.1 Mass Spectrometry Learning Objectives:
Structural Information
1 CHAPTER 9 Spectroscopy: the study of the interaction of energy with matter Energy applied to matter can be absorbed, emitted, cause a chemical change,
Molecular Structure and Organic Chemistry The structure of a molecule refers to the arrangement of atoms within the molecule. The structure of a molecule.
The electromagnetic spectrum covers a continuous range of wavelengths and frequencies, from radio waves at the low-frequency end to gamma (  ) rays at.
Introduction to Spectrophotometry
Chapter 2 Quantitative.
What do you remember about mass spectrometry?
Introduction to Instrumental Analysis - Spectrophotometry
Understanding infrared spectroscopy
INFRARED SPECTROSCOPY (IR)
Infra Red Spectroscopy
KHS ChemistryUnit 3.4 Structural Analysis1 Structural Analysis 2 Adv Higher Unit 3 Topic 4 Gordon Watson Chemistry Department, Kelso High School.
1 University of Petra Faculty of Science & Arts Department of Chemistry Seminar I.R Spectroscopy By Firas Al-ouzeh Supervisor : Nuha I. Swidan Summer 2007.
441 Chem CH-2 Ultraviolet and Visible Spectroscopy.
I.Absorbing Species Absorption of light is a two step process: AbsorptionM + h   M* Relaxation M*  M + heat The heat evolved (very minute) does not.
Infrared Spectroscopy
Analytical methods. Chromatography – general principles Mobile phase Stationary phase Compound for analysis - solute.
INFRA RED SPECTROSCOPY A guide for A level students.
Spectrophotometry.
Spectrophotometry Spectroscopy is the study of interaction of spectrum of light with a substance to be analysed, for its identification (i.e qualitative.
Spectra All electromagnetic radiation travels in waves at the same velocity, commonly known as the speed of light. In a vacuum this value is known to be.
1 UV-Vis Absorption Spectroscopy Lecture Measurement of Transmittance and Absorbance: The power of the beam transmitted by the analyte solution.
© 2014 Pearson Education, Inc. Mass Spectrometry, Infrared Spectroscopy, and Ultraviolet/Visible Spectroscopy Paula Yurkanis Bruice University of California,
Chapter 3 Infrared Spectroscopy Each interatomic bond may vibrate in several different motions (stretching or bending) - vibrational, rotational energy.
1 Spectroscopy  Atomic emission spectra  UV/Vis spectra  Infrared (IR)
Why this Chapter? Finding structures of new molecules synthesized is critical To get a good idea of the range of structural techniques available and how.
Infrared Spectroscopy
SPECTROPHOTOMETRY PRACTICAL 213 PHC INSTUMENTAL ANALYSIS.
INFRA RED SPECTROSCOPY A guide for A level students KNOCKHARDY PUBLISHING.
Copyright © 2000 by John Wiley & Sons, Inc. All rights reserved. Introduction to Organic Chemistry 2 ed William H. Brown.
UV SPECTROSCOPY Absorption spectra.
Summary: (Last lecture) Absorption spectroscopy definition electromagnetic spectroscopy matter absorption spectroscopy fundamental terms (transmittance,
Photometry.
INFRA RED SPECTROSCOPY A guide for A level students KNOCKHARDY PUBLISHING.
Infrared Spectroscopy (IR) Fourier Transform Infrared (FTIR)
Infrared Spectroscopy
Infra Red spectroscopy CH143 executive summary Use to Pharmaceutical analysis (Watson Chapter 5). Structural elucidation. Finger print region. Video’s.
11 Instrumental Analysis Tutorial By the end of this session the student should be able to: 1.Use mathematical formulae to calculate absorbance,
Spectrophotometry at a Glance
1 Instrumental Analysis Tutorial 2. 2 Objectives By the end of this session the student should be able to: 1.Describe the grating principle of work. 2.Describe.
Infra-red Spectroscopy
INFRA RED SPECTROSCOPY
Introduction to Spectrophotometry
UV/VIS SPECTROSCOPY.
441 Chem CH-2 Ultraviolet and Visible Spectroscopy.
Principles and practice of Spectrophotometer
INFRA RED SPECTROSCOPY
Introduction to Spectrophotometry
Spectrophotometer Dr . S. Jayakumar.
UV SPECTROSCOPY Absorption spectra.
INFRA RED SPECTROSCOPY
Introduction and Principle of IR Spectrophotometry
UV-VISIBLE SPECTROSCOPY Dr. R. P. Chavan Head, Department of Chemistry
IR-Spectroscopy IR region Interaction of IR with molecules
AS 2.12 SPECTROSCOPIC TECHNIQUES Infra-red spectra
IR-Spectroscopy IR region Interaction of IR with molecules
INFRARED SPECTROSCOPY Dr. R. P. Chavan Head, Department of Chemistry
INFRA RED SPECTROSCOPY
WM4 Instrumental analysis
SPECTROPHOTOMETRY Applied Chemistry.
WOODWARD-FEISER RULE It is used for calculating the absorption maxima
INFRA RED SPECTROSCOPY
Spectrophotometric Analysis
UV- Visible Spectrophotometry
Presentation transcript:

CM2007 Lecture 3

Background Correction A baseline spectrum of the solvent must be obtained in order to subtract from the spectrum of the solvent + analyte. The baseline spectrum is normally recorded by placing a cell, filled with the appropriate solvent (minus analyte) into the spectrophotometer. Baseline spectrum is recorded before the analyte spectrum using a single beam instrument. Double beam instruments record both spectra simultaneously. However, the intensity of the dual beams must be the same, the cells must posses exactly the same absorbtivity, and the solvents must be exactly the same

Application of UV/Vis to Quantitative Analysis Solvents need to be considered in UV/Vis Spectroscopy Parameters to consider Transparency Solvent effect on absorbing species, e.g., polar solvents obliterate fine structure. Compounds exhibit different absorption maxima in various solvents Absorption maxima shift depending on the solvent E.g., acetaldehyde absorbs most strongly at 287nm in heptane and at 278nm in water.

Solvent Effects on Acetaldehyde

Bathochromic (red) Shift = shift of max to longer wavelength Hypsochromic (blue) Shift = shift of max to shorter wavelength Hyperchromic Shift = intensity increase of the band. Hypochromic Shift = intensity decrease of the band The Origin and Position of Absorption Bands

Inorganic Spectra UV/Vis can be used to quantitatively determine any absorbing species. Also reagents can be used to react selectively with non- absorbing species to give products which absorb strongly in the UV/Vis. Non-absorbing inorganic species can be determined using complexing agents. E.g., thiocyanate ion for Fe, Co and Mo. Peroxide anion for Ti, V and Cr. Iodide for Bi, Pd and Te. Also important are organic chelating agents that form stable, coloured complexes with cations. E.g., o=phenanthroline for Fe, dimethylgloxime for Ni, diethyldithiocarbamate for Cu and diphenyldithiocarbazone for Pb

Experimental Considerations Wavelength selection: make measurements at a wavelength corresponding to the absorption maxima. Variables which influence absorption are solvent, pH, temperature, electrolyte concentration and interferences. Cleaning and handling of cells Materials used to make cells/cuvette. In order of preference try to use matched quartz cell, glass cells and as a last resort use plastic. Prepare calibration curve to determine the relationship between absorbance and concentration.

Analysis of Mixtures Total absorbance of a solution at a given wavelength is equal to the sum of absorbances of all the components present. No wavelength exists at which the absorbance of the mixture is due to one of the components. The absorbance of a mixture at two wavelngths ’ and ’’ may be expressed as: A’ = e m ’ c m l + e n ’ c n l A’’ = e m ’’ c m l + e n ’’ c n l The molar absorbtivities e m ’, e n ’, e m ’’ and e n ’’ can be evaluated either from individual standards of M and N or from the slopes of the Beer-Lambert plots The absorbances A’ and A’’ and the cell length l can be determined experimentally. Therefore the individual concentrations can be determined

Analysis of Mixtures

Isobestic Point Often one absorbing species, X, is converted to another absorbing species, Y, during the course of a reaction. This transformation leads to a very obvious and characteristic behaviour. If the spectrum of pure X and pure Y cross each other at any wavelength, then any spectrum recorded during this reaction will cross at the same point The observation of an isobestic point during a reaction is good evidence that only two principal species are present. E.g., methyl red changes between red (Hin) and yellow (In - ) near pH = 5.5

Isobestic Point

Infrared Spectroscopy IR spectrum encompasses wavelengths 800 – 1,000,000nm or μm Analytical IR techniques normally only exploit radiation in the range 2500 – 16,000nm ( μm) Molecules oscillate in a predictable manner around molecular bonds. (bending, stretching and vibrating) IR is used for qualitative structural identification of compounds. By historical convention IR spectra are displayed in a different manner to UV/Vis. The y-axis is of an IR spectrum is plotted in terms of percentage transmittance.

IR Spectra

% Transmittance

IR Spectra The x-axis is not displayed in terms of either wavelength of frequency but ‘wavenumber’. Wavenumbers represent the reciprocal of wavelength (1/λ) and have units of cm -1. It should be noted that increasing wavenumbers correspond to increasing frequency and, therefore, to progressively more energetic radiation. The identification of absorption peaks can be further used to identify a class of molecule, e.g., alcohol, aldehyde, ketone, ether, ester. Characteristic absorption bands for molecular vibration are tabulated in ‘correlation charts’ to aid structural identification of spectra

BondCompound TypeFrequency range, cm -1 C-H Alkanes (s) stretch (v) scissoring and bending CH 3 Umbrella Deformation1380(m-w) - Doublet - isopropyl, t-butyl C-HAlkenes (m) stretch (s) bend C-H Aromatic Rings (m) stretch Phenyl Ring Substitution Bands (s) bend Phenyl Ring Substitution Overtones (w) - fingerprint region C-HAlkynes (s) stretch (b) bend C=CAlkenes (m,w)) stretch CCCC Alkynes (w,sh) stretch C=CAromatic Rings1600, 1500(w) stretch C-OAlcoholsAlcohols, Ethers, Carboxylic acids, EstersEthersCarboxylic acidsEsters (s) stretch C=OAldehydesAldehydes, Ketones, Carboxylic acids, EstersKetonesCarboxylic acidsEsters (s) stretch O-H Monomeric -- Alcohols, Phenols (s,br) stretch Hydrogen-bonded -- Alcohols, PhenolsAlcoholsPhenols (b) stretch Carboxylic acids (b) stretch N-HAmines (m) stretch (m) bend C-NAmines (m) stretch CNCN Nitriles (v) stretch NO 2 Nitro Compounds (s) asymmetrical stretch (s) symmetrical stretch

Interpretation of Spectra OH stretching vibrational frequency CH aliphatic asymmetrical stretching vibrational band. The less intense band at 2860 is the symmetrical stretching vibrational band CH 2 characteristic absorption CO absorption The compound is cyclohexanol.

The broad intense absorption band seen here is characteristic of a carboxylic acid dimer CH aliphatic assymmetric stretch CH aliphatic symmetic stretching vibrational band Absorption in this region is due to CH3. Note the weak band just below This is the methyl bending vibrational band Due to coupling of the in-plane OH bending and CO stretching of the dimer OH out-of-plane bending of the dimer. The compound is octanoic acid

CM2007 Tutorial

Tutorial Questions 1. Which wavelength range encompasses the UV/Vis spectrum? 2. Draw a schematic diagram of a spectrophotometer. 3. State the Beer Lambert law and define the parameters 4. What are the three possible deviation from the Beer Lambert law? Real, Instrumental and chemical. 5. What are the typical radiant sources used to provide broadband light in UV/Vis spectrophotometry? 6. How can the spectral range of a tungsten filament lamp be extended in the UV? 7. Describe how a monochromator works to provide monochromatic light.

9. Describe the different categories of cells/cuvettes available as sample holders. 10. What is the basis and principles of IR spectroscopy? 11. What are the differences between IR and UV/Vis spectra? 12. Describe the different sample prep for the analysis of a solid using IR. Why is KBr used? What is the term used to describe a shift in λ max to a longer wavelength. Tutorial Questions

16/A mixture of zinc sulfate and cobalt tetrachloride yields an absorbance reading of 0.22 at a λ = 600nm. The concentration of cobalt tetrachloride is known to be 1.0x10 -2 M in the mixture and has a molar absorbtivity coefficient of = 11 L mol -1 cm -1. What is the absorbance reading of cobalt tetra chloride if the path length of the cell is 1cm? What is the absorbance reading for zinc sulphate? Given the data for zinc sulphate below, plot the data on graph paper and determine the concentration of zinc sulphate in the mixture and calculate its molar absorbtivity coefficient. If 600nm = λmax for zinc sulphate, what is its likely colour? Tutorial Questions

Concentration (x M)Absorbance Tutorial Questions

A total = (ecl)x + (ecl)y The absorbance reading of cobalt tetra chloride is calculated as follows A = 11L mol -1 cm -1 x 1.0 x M x 1cm = 0.11 Therefore the absorbance of copper sulfate = A = 0.22 – 0.11 = 0.11 Tutorial Questions

Concentration of copper sulphate from the graph = 5.5 x M and the molar absorbtivity coefficient = 20 L mol -1 cm -1. Likely colour = blue due to the absorbance of light in the red region of the spectrum. Tutorial Questions