990901EIS_Opt.1 The Instrument: Optical Design Dr. John T. Mariska Data Coordination Scientist Naval Research Laboratory 202-767-2605

Slides:



Advertisements
Similar presentations
000509EISPDR_SciInvGIs.1 EIS Performance and Operations Louise Harra Mullard Space Science Laboratory University College London.
Advertisements

EIS Design Optimization Criteria Overall Length < 3 meters Overall Width < 0.5m Telescope Mirror Diameter 150mm Plate scale 1 arc-sec/pixel spatial –13.5.
THROUGHPUT OF A NORMAL INCIDENCE SPECTROMETER DESIGN IN DIFFERENT WAVELENGTH RANGES Luca Teriaca Max Planck Institut für Sonnensystemforschung.
1 ATST Imager and Slit Viewer Optics Ming Liang. 2 Optical layout of the telescope, relay optics, beam reducer and imager. Optical Layouts.
November 20, 2003University of Colorado The Off-Plane Option Study Results Potential Capabilities Webster Cash University of Colorado.
The waves spread out from the opening!
PSI: Polarimetric Spectroscopic Imager - A Simple, High Efficiency, High Resolution Spectro-­Polarimeter Samuel C. Barden Frank Hill.
Spectral Resolution and Spectrometers
Udo Schühle 5. Solar Orbiter EUS Consortium Meeting RAL, 3. March 2006 EUS NI spectrograph design constraints EUS NI spectrograph design constraints Udo.
Udo Schühle 5. Solar Orbiter EUS Consortium Meeting RAL, 3. March 2006 EUS NI spectrograph design constraints EUS NI spectrograph design constraints Udo.
Optical Astronomy Imaging Chain: Telescopes & CCDs.
Spectral Resolution and Spectrometers A Brief Guide to Understanding and Obtaining the Proper Resolution of the 785 Raman System.
XRT X-ray Observations of Solar Magnetic Reconnection Sites
Exam II Review. Review of traveling wave interference Phase changes due to: Optical path length differences sources out of phase General solution.
Wide-field, triple spectrograph with R=5000 for a fast 22 m telescope Roger Angel, Steward Observatory 1 st draft, December 4, 2002 Summary This wide-field,
The Solar-B EUV Imaging Spectrometer: an Overview of EIS J. L. Culhane Mullard Space Science Laboratory University College London.
Interference and Diffraction
1 A Grating Spectrograph for the LCLS Philip Heimann Advanced Light Source Observe the spontaneous radiation spectrum of the individual undulators Observe.
September 19, 2002University of Colorado The Off-Plane Option for the Reflection Grating Spectrometer Webster Cash University of Colorado.
Overlapping Orders Douglas A. Skoog and James J. Leary, Principles of Instrumental Analysis, Saunders College Publishing, Fort Worth, d(sin  + sin.
Diffraction Applications Physics 202 Professor Lee Carkner Lecture 28.
R. M. Bionta SLAC November 14, 2005 UCRL-PRES-XXXXXX LCLS Beam-Based Undulator K Measurements Workshop Use of FEL Off-Axis Zone Plate.
Spectrographs. Spectral Resolution d 1 2 Consider two monochromatic beams They will just be resolved when they have a wavelength separation of d Resolving.
Astronomical Spectroscopy
990901EIS_RR_Science.1 Science Investigation Goals and Instrument Requirements Dr. George A. Doschek EIS US Principal Investigator Naval Research Laboratory.
990901EIS_RR_Mgmt_OV.1 Management Overview Dr. George A. Doschek EIS US Principal Investigator Naval Research Laboratory Phone: , FAX:
Optical characteristics of the EUV spectrometer for the normal-incidence region L. Poletto, G. Tondello Istituto Nazionale per la Fisica della Materia.
Grazing-incidence design and others L. Poletto Istituto Nazionale per la Fisica della Materia (INFM) Department of Electronics and Informatics - Padova.
Optical characteristics of the EUV spectrometer (EUS) for SOLO L. Poletto, G. Tondello Istituto Nazionale per la Fisica della Materia (INFM) Department.
Optical Design for an Infrared Multi-Object Spectrometer R. Winsor, J.W. MacKenty, M. Stiavelli Space Telescope Science Institute M. Greenhouse, E. Mentzell,
Astronomical Instrumentation Often, astronomers use additional optics between the telescope optics and their detectors. This is called the instrumentation.
Science Specification of SOLAR-C payload SOLAR-C Working Group 2012 July 23.
SXT Soft X-Ray Telescope Onboard the Yohkoh Satellite SXT.ppt.
Solar-B Mission Preparation Len Culhane – UK EIS Principal Investigator Louise Harra – UK Project Scientist David Williams – UK EIS Chief Observer Mullard.
Solar-B/EIS high-cadence observation for diagnostics of the corona and TR S. Kamio (Kyoto Univ.) Solar-B domestic meeting.
EIS - MSSL/NRL EUV Imaging Spectrometer SOT - ISAS/NAOJ Solar Optical Telescope XRT - SAO/ISAS X-ray Telescope FPP - Lockheed/NAOJ Focal Plane Package.
EUV Spectroscopy. High-resolution solar EUV spectroscopy.
D EDICATED S PECTROPHOTOMETER F OR L OCALIZED T RANSMITTANCE A ND R EFLECTANCE M EASUREMENTS Laetitia ABEL-TIBERINI, Frédéric LEMARQUIS, Michel LEQUIME.
STATUS REPORT OF FPC SPICA Task Force Meeting March 29, 2010 MATSUMOTO, Toshio (SNU)
The Solar-B EUV Imaging Spectrometer: an Overview of EIS J. L. Culhane Mullard Space Science Laboratory University College London.
YunNan One Meter Infrared Solar Tower Jun Lin. Why is YNST? After Solar-B launch, what can we do by using of ground-based telescope ? Detailed chromosphere.
14 October Observational Astronomy SPECTROSCOPY and spectrometers Kitchin, pp
TESIS on CORONAS-PHOTON S. V. Kuzin (XRAS) and TESIS Team.
18 October Observational Astronomy SPECTROSCOPY and spectrometers Kitchin, pp
Astronomical Spectroscopy Notes from Richard Gray, Appalachian State, and D. J. Schroeder 1974 in “Methods of Experimental Physics, Vol. 12-Part A Optical.
SPIE Optics for EUV, X-Ray, and Gamma-Ray Astronomy VI
JGR 19 Apr Basics of Spectroscopy Gordon Robertson (University of Sydney)
PACS SVR 22/23 June 2006 PACS FPU Subunits1 FM FPU Subunits A. Poglitsch.
The waves spread out from the opening!
20 OCT 2003SOLAR ORBITER MEETING1 Optical Design Activities at RAL Kevin Middleton Optical Systems Group Space Science & Technology Dep’t. Rutherford Appleton.
1 Optical observations of asteroids – and the same for space debris… Dr. D. Koschny European Space Agency Chair of Astronautics, TU Munich Stardust school.
Optical characteristics of the EUV spectrometer for the grazing-incidence region L. Poletto, G. Tondello Istituto Nazionale per la Fisica della Materia.
Solar orbiter_______________________________________________.
020625_ExtReview_Nexus.1 NEXUS / SDO / ILWS SDO Science goals: How does solar variability directly affect life on Earth? SDO areas of interest: –Solar.
N A S A G O D D A R D S P A C E F L I G H T C E N T E R I n s t r u m e n t S y n t h e s i s a n d A n a l y s i s L a b o r a t o r y APS Formation Sensor.
020116EIS_JTM.1 EIS Sensitivity Update John Mariska NRL 3-5 Feb 2003.
Normal-Incidence Design Option for SolO/EUS Roger J. Thomas NASA/GSFC 2004 November 04.
Spectrometer Throughput Dr Peter Young Consortium meeting, 3 March 2006.
06 Oct 05Space Science & Technology Dept1 Solar Orbiter Consortium Meeting 03 Mar 06 Optical Design Of Solar Orbiter Normal Incidence Spectrometer KF Middleton.
990901EIS_RR_HV.1 Heritage and Validation Approach Dr. Clarence M. Korendyke EIS US Project Scientist Naval Research Laboratory
Copyright © 2009 Pearson Education, Inc. Chapter 35-Diffraction.
Spectroscopic Observations with SolarB-EIS Helen E. Mason DAMTP, Centre for Mathematical Sciences Giulio Del Zanna, MSSL.
Calibration of the Cosmic Origins Spectrograph
First Assessments of EUVI Performance on STEREO SECCHI
Chapter 35-Diffraction Chapter 35 opener. Parallel coherent light from a laser, which acts as nearly a point source, illuminates these shears. Instead.
XRT Performance Update
Instrument Considerations
Status of Equatorial CXRS System Development
EUS NI spectrograph design constraints
Optics Alan Title, HMI-LMSAL Lead,
Presentation transcript:

990901EIS_Opt.1 The Instrument: Optical Design Dr. John T. Mariska Data Coordination Scientist Naval Research Laboratory Dr. Charles M. Brown US Instrument Scientist Naval Research Laboratory

990901EIS_RR_Opt.2 EIS Instrument Schematic Sun Filter Grating Primary CCD Long CCD Short Slit

990901EIS_RR_Opt.3 EIS Design Optimization Criteria Overall Length < 3 Meters Overall Width < 0.5m Telescope Mirror Diameter 150mm Plate Scale 1 arc-sec/Pixel Spatial –13.5 Micron Pixels Two Wavelength Bands of 40 Å Width –Short Wavelength Centered at 190Å –Long Wavelength Centered at 270Å Two Detectors Cover 40Å Each 4200 l/mm Grating-Single Ruling Density –Half ML Coated for 190Å –Half ML Coated for 270Å Detector Must Clear Input Path (etc.)

990901EIS_RR_Opt.4 EIS-7Tr Design Heritage Trendy: Paraboloid Telescope –Only Two Reflections SERTS: Toroidal Grating J-PEX: Laminar Rulings EIT and Trace: Sectored Multilayer Coatings Sumer: Primary Mirror Scan Concept

990901EIS_RR_Opt.5 Transmission of Al Filter

990901EIS_RR_Opt.6 F/13 Off-Axis Parabola

990901EIS_RR_Opt.7 Spot Diagrams for 0, ± 4 arc min

990901EIS_RR_Opt.8 Summary: RMS Blur of Primary

990901EIS_RR_Opt.9 Grating Slit 190A 270A EIS-7TR Spectrometer Layout

990901EIS_RR_Opt.10 Comparison of Designs - Summary

990901EIS_RR_Opt.11 EIS-7T Layout

990901EIS_RR_Opt.12 EIS-7TR Spectrometer Layout 270 Å Band

990901EIS_RR_Opt.13 EIS-7Tr Super-Optimized by Roger Thomas

990901EIS_RR_Opt.14 EIS-7Tr Spot Diagrams and Histograms

990901EIS_RR_Opt.15 EIS-7Tr Field of View 190 Å

990901EIS_RR_Opt.16 EIS-7Tr Spot Diagrams Å

990901EIS_RR_Opt.17 EIS-7Tr Spectral and Spatial Resolution Curved Focal Surface - Short Band

990901EIS_RR_Opt.18 EIS-7Tr Spectral and Spatial Resolution Flat Focal Surface - Short Band

990901EIS_RR_Opt.19 EIS-7Tr Spot Diagrams Å

990901EIS_RR_Opt.20 EIS-7Tr Field of View 270 Å

990901EIS_RR_Opt.21 EIS-7Tr Spectral and Spatial Resolution Flat Focal Surface - Long Band

990901EIS_RR_Opt.22 Detector Locations - Summary

990901EIS_RR_Opt.23 Multilayer Gratings Characterized by NRL

990901EIS_RR_Opt.24 1 Seely, Applied Optics 36, 8206 (1997) 2 J-PEX mission, Ray Cruddace and Mike Kowalski NRL Experience With Zeiss Holographic Ion-Etched Laminar Gratings

990901EIS_RR_Opt.25 AFM Image of a Zeiss Holographic Grating

990901EIS_RR_Opt.26 Laminar Grating Efficiency Calculation Computer Code Accounts for the Multilayer Coating: – Thickness and Optical Properties of the Layer Materials – Interdiffusion Layer Thickness and Microroughness Laminar Groove Pattern: 4200 G/mm, Equal Land and Groove Widths, Uniform Groove Depth EIS7 Optical Model:  = 6.388° and  = 8.526° Optimal Groove Depth Is H = (p /2)/(cos  + cos  ) Where P = 1, 3,... – H = /4 for Normal Incidence – H Varies Slowly With  and  58 Å Groove Depth Is Optimum for  = 6.388° and = 232 Å. EIS7 LONG Waveband: – 20 Mo/mosi2/si Periods – 2d = 290 Å, Rpk = 24% at = 268 Å EIS7 SHORT Waveband: – 20 Mo/mosi2/si Periods – 2d = 210 Å, Rpk = 31% at = 195 Å

990901EIS_RR_Opt.27 Groove Efficiency Groove Efficiency  Multilayer Grating Efficiency / Multilayer Coating Reflectance Laminar Grating With 4200 Grooves/mm and: –Equal Land and Groove Widths  Zero Even-Order Groove Efficiency –Groove Depth h = 58 Å  Zero 0th-Order Groove Efficiency at  4h = 232 Å. Odd-Order Groove Efficiencies Varies Slowly With Wavelength and Angle:

990901EIS_RR_Opt.28 Efficiency in the Two Wavebands in Diffraction Orders Multilayer Grating Efficiency

990901EIS_RR_Opt.29 Draft Specifications for Primary

990901EIS_RR_Opt.30 Flight Grating Optical Specifications

990901EIS_RR_Opt.31 Scientific Performance Achieving the EIS Scientific Goals Requires an Instrument That Can Obtain Sufficient Numbers of Detected Photons in a Single 3–20 s Exposure to Characterize Emission Line Profiles of Interest To Verify This, We Have Modeled the Instrument Throughput Simulated the Ability of the Instrument to Measure Doppler Shifts and Nonthermal Velocities As a Function of Count Rate

990901EIS_RR_Opt.32 EIS Is a Stigmatic Spectrometer

990901EIS_RR_Opt.33 EIS Slit and Raster

990901EIS_RR_Opt.34 Instrument Throughput Throughput for the Entire Optical Chain Has Been Modeled Using Mirror Area = 88.4 cm 2 (Half of a 15 cm Diameter Mirror) Grating Groove Efficiency = 0.40 Detector Quantum Efficiency = 0.80 Obscuration by Front Filter Support Structure = 0.80 Obscuration by Mesh Supporting Front Filter = 0.80 Wavelength-Dependent Transmission Curves for Two Thin Al Filters Wavelength-Dependent Multilayer Efficiencies for Mirror and Grating Computed by J. Seely Slit Width = 1 Arcsec Solar Spectra Computed Using Chianti Atomic Physics Database and Emission Measure Curves for Quiet Sun, Active Regions, and Flares

990901EIS_RR_Opt.35 Active Region Performance

990901EIS_RR_Opt.36 EIS Quiet Sun Performance

990901EIS_RR_Opt.37 EIS Flare Performance

990901EIS_RR_Opt.38 Velocity Resolution Estimates of Errors in Velocity Measurements Assume Dispersion –Long Wavelength: 25.7 km s -1 Per Pixel (0.023 Å) –Short Wavelength: 36.5 km s -1 Per Pixel (0.023 Å) Spectral Resolution –Long Wavelength: 11.0 mÅ rms (21.5 fwhm) –Short Wavelength: 10.7 mÅ rms (24.1 fwhm) CCD Pixel Size: 13.5 Microns Nonthermal Velocity: 20.0 km s -1 Formation Temperature of Emission Line: 1.5 MK Atomic Mass 56 Rest Wavelength –Long Wavelength: Å –Short Wavelength: Å

990901EIS_RR_Opt.39 Long Wavelength Velocity Error Estimates

990901EIS_RR_Opt.40 Short Wavelength Velocity Error Estimates