2007/12/08-10Hinode Workshop in China1 HINODE/X-Ray Telescope R. Kano ( NAOJ ) & Japan-US XRT Team Golub et al. “The X-Ray Telescope (XRT) for the Hinode.

Slides:



Advertisements
Similar presentations
The Science of Solar B Transient phenomena – this aim covers the wide ranges of explosive phenomena observed on the Sun – from small scale flaring in the.
Advertisements

000509EISPDR_SciInvGIs.1 EIS Performance and Operations Louise Harra Mullard Space Science Laboratory University College London.
XRT Instrument Capabilities Ed DeLuca, Leon Golub & Jay Bookbinder SAO.
2009/06/22XRT Team Meeting1 A Proposal of Standard Observations: AR, Flare, and PreFlare R. Kano (NAOJ)
COSPAR E July 22, Paris revised for Nobeyama Symposium 2004 October 29, Kiyosato Takeo Kosugi (ISAS/JAXA, Japan)
2007/12/08-10Hinode Workshop in China 1 XRT On-orbit Performance R. Kano (NAOJ) & Japan-US XRT Team.
Probing Magnetic Reconnection with Active Region Transient Brightenings Martin Donachie Advisors: Adam Kobelski & Roger Scott.
Flare Luminosity and the Relation to the Solar Wind and the Current Solar Minimum Conditions Roderick Gray Research Advisor: Dr. Kelly Korreck.
Instrument Checkout / Performance Verification for XRT & Control of XRT Observation R. Kano for the XRT Team.
990901EIS_Opt.1 The Instrument: Optical Design Dr. John T. Mariska Data Coordination Scientist Naval Research Laboratory
Science With the Extreme-ultraviolet Spectrometer (EIS) on Solar-B by G. A. Doschek (with contributions from Harry Warren) presented at the STEREO/Solar-B.
SWD 2005, Taormina, Jun,19-26 An EUV Imaging Detector of Space Solar Telescope Qian Song, Binxun Ye, Zhaowang Zhao National Astronomical Observatories,
000509EISPDR_SciInvGIs.1 EIS Science Goals: The First Three Months…. Louise Harra Mullard Space Science Laboratory University College London.
XRT-MDP Functions - AEC · ARS · FLD - Masumi Shimojo Nobeyama Solar Radio Observatory 4th Solar-B Science Meeting
2007/12/08-10 Hinode Workshop / Hinode 専題研討会 1 XRT Observation Planning R.Kano (NAOJ) and XRT team.
2006/4/17Extended Solar-B mission onboard control and data handling (data recorder, downlinks, observation tables…) Toshifumi Shimizu ISAS/JAXA.
6/2/2015 Solar-B XRT XRT-1 A High Resolution Grazing Incidence Telescope for the Solar-B Observatory Solar-B XRT Presenter: Leon Golub Smithsonian Astrophysical.
XRT X-ray Observations of Solar Magnetic Reconnection Sites
The Hinode EUV Imaging Spectrometer: In-Orbit Performance and Early Results STEREO-SECCHI Consortium Meeting Paris, 5 th – 8 th March, 2007 L. Culhane,
Solar-B XRT XRT-1 The Science and Capability of the Solar-B / X-Ray Telescope Solar-B XRT Presenter: Ed DeLuca Smithsonian Astrophysical Observatory.
Magnetic Field Measurements from Solar-B Information shown here is from Solar-B team (including Drs Ichimoto, Kosugi, Shibata, Tarbell, and Tsuneta)
Flares and Eruptive Events Observed with the XRT on Hinode Kathy Reeves Harvard-Smithsonian Center for Astrophysics.
Solar-B Science Objectives - Overview of the Mission - Kazunari Shibata (Kyoto Univ.)
Radio Emission from Masuda Sources New Jersey Institute of Technology Sung-Hong Park.
25-Sep-2007Hinode Intro to MSU SG1 3 high-performance telescopes EUV Imaging Spectrometer (EIS) Diagnostics of the coronal thermal properties and dynamics.
990901EIS_RR_Science.1 Science Investigation Goals and Instrument Requirements Dr. George A. Doschek EIS US Principal Investigator Naval Research Laboratory.
METHOD OF DEM ESTIMATION 1.Generating “true” model observations. We start with the XRT temperature response functions R c (T) and a coronal emission model.
New Views of the Solar Corona with Hinode X-Ray Telescope (XRT) Taro Sakao (ISAS/JAXA) and the XRT Team (ISAS/JAXA, SAO, NAOJ, NASA/MSFC)
Science Specification of SOLAR-C payload SOLAR-C Working Group 2012 July 23.
SXT Soft X-Ray Telescope Onboard the Yohkoh Satellite SXT.ppt.
Solar Atmosphere as a Laboratory for Magnetic Reconnection Shinsuke Imada (ISAS/JAXA)
Solar-B Mission Preparation Len Culhane – UK EIS Principal Investigator Louise Harra – UK Project Scientist David Williams – UK EIS Chief Observer Mullard.
Solar-B/EIS high-cadence observation for diagnostics of the corona and TR S. Kamio (Kyoto Univ.) Solar-B domestic meeting.
1 Future solar missions (Based on the summary by R.A. Harrison) S. Kamio
Co-spatial White Light and Hard X-ray Flare Footpoints seen above the Solar Limb: RHESSI and HMI observations Säm Krucker Space Sciences Laboratory, UC.
EIS - MSSL/NRL EUV Imaging Spectrometer SOT - ISAS/NAOJ Solar Optical Telescope XRT - SAO/ISAS X-ray Telescope FPP - Lockheed/NAOJ Focal Plane Package.
Hinode: A New Solar Observatory in Space H. Hara ( NAOJ/NINS) and the Hinode team 2007 Dec 8.
Evolution of Flare Ribbons and Energy Release Rate Ayumi Asai 1,2, T. Yokoyama T. 3, M. Shimojo 2, S. Masuda 4, and K. Shibata 1 1:Kwasan and Hida Observatories,
1 Solar-B Data Co-Alignment Plan T.Shimizu (NAOJ) Solar-B MO&DA Working Group Solar-B 4 th Science
18-April-2006XRT Team1 Initial Science Observations Solar-B XRT Ed DeLuca for the XRT Team.
TESIS on CORONAS-PHOTON S. V. Kuzin (XRAS) and TESIS Team.
Response of the Corona to Magnetic Activity in Underlying Plage Regions Ryutova, M., & Shine, R. 2004, ApJ, 606, 571 Plasma Seminar 2004 June 2 by Ayumi.
Observations of Moreton waves with Solar-B NARUKAGE Noriyuki Department of Astronomy, Kyoto Univ / Kwasan and Hida Observatories M2 The 4 th Solar-B Science.
XRT’s Observational Parameters R. Kano (NAOJ). Contents FOV & Full Disk Imaging Time Cadence & Observation Table New Items as Solar X-ray Telescopes –Pre-flare.
Evolution of Emerging Flux and Associated Active Phenomena Takehiro Miyagoshi (GUAS, Japan) Takaaki Yokoyama (NRO, Japan)
Nonlinear force-free coronal magnetic field extrapolation scheme for solar active regions Han He, Huaning Wang, Yihua Yan National Astronomical Observatories,
Pre-flare activity of M1.2 flare 김수진 1,2, 문용재 1, 김연한 1, 박영득 1, 김갑성 2 1. Korea Astronomy and Space Science Institute 2. Kyung Hee University.
Flare-associated shock waves observed in soft X-ray NARUKAGE Noriyuki Kwasan and Hida Observatories, Kyoto University – DC3 The 6 th Solar-B Science Meeting.
Joint Planning of SOT/XRT/EIS Observations Outline of 90 Day Initial Observing Plans T. Shimizu, L Culhane.
Science Lessons Learned from TESIS and their Relevance to SWAP V. Slemzin, LPI PROBA 2 SWT, La Roche, 14 June 2010.
Optical characteristics of the EUV spectrometer for the grazing-incidence region L. Poletto, G. Tondello Istituto Nazionale per la Fisica della Materia.
Flare Prediction and the Background Corona Coronal Diagnostic Spectrometer Wolter-Schwarzschild Type 2 telescope Two separate spectrometers- the Normal.
High resolution images obtained with Solar Optical Telescope on Hinode
Model instruments baseline specification and key open issues EUV/FUV High-Throughput Spectroscopic Telescope Toshifumi Shimizu (ISAS/JAXA) SCSDM-4.
Evolution of Ha Flare Kernels and Energy Release
Flare Irradiance Studies with the EUV Variability Experiment on SDO R. A. Hock, F. G. Eparvier, T. N. Woods, A. R. Jones, University of Colorado at Boulder.
2005/11/15STEREO/Solar-B Workshop1 Solar-B X-ray Telescope (XRT) R. Kano (NAOJ) and XRT Team XRT.
1 Scientific Data from Solar-B Solar Optical Telescope (SOT) T.Shimizu (NAOJ) Solar-B MO&DA Working Group
Flares and Eruptive Events Observed with the XRT on Hinode Kathy Reeves Harvard-Smithsonian Center for Astrophysics.
MPI Semiconductor Laboratory, The XEUS Instrument Working Group, PNSensor The X-ray Evolving-Universe Spectroscopy (XEUS) mission is under study by the.
The X-Ray Telescope aboard Solar-B: An Overview Taro Sakao (ISAS/JAXA) and The XRT Team.
XRT SOT Alignment DeLuca With comments from Tarbell & Metcalf 21-Jan-2006.
Spectroscopic Observations with SolarB-EIS Helen E. Mason DAMTP, Centre for Mathematical Sciences Giulio Del Zanna, MSSL.
RESISTIVE EMERGENCE OF UNDULATORY FLUX TUBES
Planning Flare Observations for Hinode/EIS
XRT Performance Update
XRT Particle Acceleration at Magnetic Reconnection Sites
Studying Transition Region Phenomena with Solar-B/EIS
Downflow as a Reconnection Outflow
Slit and Slot Interchange
Presentation transcript:

2007/12/08-10Hinode Workshop in China1 HINODE/X-Ray Telescope R. Kano ( NAOJ ) & Japan-US XRT Team Golub et al. “The X-Ray Telescope (XRT) for the Hinode Mission” 2007, Solar Physics, 243, pp Kano et al. “The Hinode X-Ray Telescope (XRT): Camera Design, Performance and Operations” 2007, Solar Physics, in press.

2007/12/08-10Hinode Workshop in China 秒角という超高空間分解能 で、太陽表面の磁場ベクトルを精 密計測 約1秒角の高解像度で、コロナの構造 やそのダイナミックな変動を観測 コロナの物質が出す極端紫外線を撮像・分 光し、コロナ物質の密度・温度・流れの状 態を診断 3望遠鏡の同時観測により、 太陽コロナ活動や加熱機構のメカニズムを探 る Hinode EUV Imaging Spectrometer: EIS Solar Optical Telescope: SOT X-ray Telescope: XRT

2007/12/08-10Hinode Workshop in China3 Outline 1.Introduction of X-ray telescope 2.Control of XRT observations 3.Coronal temperature diagnostics 4.Summary

2007/12/08-10Hinode Workshop in China4 1. Introduction of XRT

2007/12/08-10Hinode Workshop in China5 SAO Front Door and Hinge Assembly Electrical Box Ascent Vents 2 places Graphite Tube Assembly CCD Camera and Radiator This is XRT NAOJ ISAS

2007/12/08-10Hinode Workshop in China6 Front Door and Hinge Assembly Electrical Box Ascent Vents 2 places Graphite Tube Assembly CCD Camera and Radiator Grazing Incidence X-ray Mirror Back-Illuminated CCD: 2k x 2k pixel Optimized set of focal-plane filters Sophisticated observation control by MDP This is XRT

2007/12/08-10Hinode Workshop in China7 XRT Optics Grazing incident X-ray optics. Visible light (G-band) optics on the central axis shears one CCD with the X-ray optics, and its images are used for the co-alignment with SOT

2007/12/08-10Hinode Workshop in China8 Optical Performance Increased spatial resolution while maintaining FOV covering the whole Sun –~3 times higher (1 arcsec pixel size) than Yohkoh/SXT = highest ever achieved for soft X-ray telescopes for the Sun. Focus adjustment mechanism –Imaging with the highest resolution for areas covering SOT/EIS field of view. –Or, full-Sun imaging with a moderate (2 - 3”) resolution. Point Spread Function ※ Al K (8.34A) Cu-L line(13.3A) XRT SXT high resolution in narrow FOV moderate resolution for wide FOV

2007/12/08-10Hinode Workshop in China9 XRT analysis filters XRT has 9 X-ray filters and 1 visible light filter. Thin-Be Med-BeC-Poly Thin-Al -Poly Med-Al open G-band Thick-AlTi-Poly Thin-Al -Mesh Thick-Be open

2007/12/08-10Hinode Workshop in China10 XRT analysis filters Adjacent filter pairs for temperature diagnostics. Both SXT-like and TRACE-like filters included in the set. Optimized filter selection and layout

2007/12/08-10Hinode Workshop in China11 Key features of XRT Continuous coverage of the entire temperature range in the corona for ≳ 1 MK plasmas … Capable of observing entire plasma processes that take place in the corona, with temperature diagnostic capability High angular-resolution/contrast observations for high temperature ( ≳ 2 MK) plasmas

2007/12/08-10Hinode Workshop in China12 Angular resolution (CCD Pixel Size) Temperature range 0.5” 1” 2.5” Yohkoh/SXT (Full Sun) SoHO/EIT (Full Sun) TRACE (Partial) Hinode/XRT (Full Sun) ~ 2 MK Scientific Location of XRT (Angular resolution and temperature range)

2007/12/08-10Hinode Workshop in China13 Hinode XRTYohkoh SXT Hinode XRT and Yohkoh SXT Images at a Same Solar Activity Phase Spatial resolution 1 arcsec 5 arcsec

2007/12/08-10Hinode Workshop in China14 Hinode XRTYohkoh SXT Active Region

2007/12/08-10Hinode Workshop in China15 Hinode XRT Yohkoh SXT Quiet Region

2007/12/08-10Hinode Workshop in China16 Hinode XRTYohkoh SXT Bright points now resolved into ensemble of loops X-ray Bright Points

2007/12/08-10Hinode Workshop in China17 XRT Sciences Photosphere-Corona connection Formation and heating of the corona incl. energy transport, storage, and dissipation Outer-corona investigation extending to CME and solar wind investigations imaging observation of the soft X-ray/XUV corona with advanced imaging and temperature- diagnostic capabilities. Vast varieties of active, or even non-active, phenomena in the corona:

2007/12/08-10Hinode Workshop in China18 2. Control of XRT observations

2007/12/08-10Hinode Workshop in China19 On-board functions for XRT Obs. Mission Data Processor DR Image Compression Pre-Flare Buffers Autonomous Functions FLDARSAEC XRT Observation Tables Data Packet Edition SOT EIS Mission Data Processor (MDP) has many functions for XRT. Management of XRT exposures by “Observation Table” Autonomous Functions for XRT observations –Automatic Exposure-duration Control (AEC) –Automatic Region Selector (ARS) –FLare Detection (FLD) Image processing –Edition of Image data packets –Image compression –Pre-Flare Buffers

2007/12/08-10Hinode Workshop in China20 Observation Table Program No.1 “Normal Obs.” 1.SUB1 loop=10 2.SUB3 loop=1 3.SUB2 loop=10 4.SUB3 loop=1 SEQ1: global structure of 1MK corona Exp. for thin-Al-mesh & full FOV Exp. for thin-Al-poly & full FOV SEQ2: AR’s temperature structure Exp. for thin-Al-poly & small FOV (AR) Exp. for med-Be-mesh & small FOV (AR) SEQ3: 1MK corona in AR Exp. for thin-Al-mesh & small FOV (AR) Exp. for thin-Al-poly & small FOV (AR) SEQ100: CCD dark calibration Sequence Table (100 sequences) Observation Program (20 programs) SUB1 1. SEQ1 loop=1 2. SEQ2 loop=20 SUB2 1. SEQ1 loop=1 2. SEQ3 loop=20 SUB3 1. SEQ100 loop=1 : XRT exposures are managed by one observation table in the Mission Data Processor (MDP). The structure of XRT observation table is essentially the same with those for SOT.

2007/12/08-10Hinode Workshop in China21 Automatic Exposure-duration Control (AEC) Exposure duration is adjusted by using the intensity histogram. LLT ULT Intensity I Number of pixel LLT ULT Intensity I Number of pixel LLT ULT Intensity I Number of pixel Under Exposure Normal Exposure Over Exposure If U is too much, shorten the exposure duration. If L is not enough, lengthen the exposure duration. F(I)

2007/12/08-10Hinode Workshop in China22 Automatic Region Selector (ARS) XRT will take an “ARS patrol image” (the full CCD-frame and 2”-resolution) once per orbit (every 90 min typically). Two modes of ARS run in parallel each other. –“Global Search” mode to fine the brightest region. –“Local Search” mode to track bright regions.

2007/12/08-10Hinode Workshop in China23 ARS: Global Search Steps to derive a new FOV Take a new patrol image. Define the search area. (The default is all CCD.) Make a macro-pixel image. Pick up the brightest macro- pixel. Calculate a fine position in the original image around the selected macro-pixel. New FOV

2007/12/08-10Hinode Workshop in China24 Automatic Region Selector (ARS) XRT will take an “ARS patrol image” (the full CCD-frame and 2”-resolution) once per orbit (every 90 min typically). Two modes of ARS run in parallel each other. –“Global Search” mode to fine the brightest region. –“Local Search” mode to track bright regions.

2007/12/08-10Hinode Workshop in China25 ARS: Local Search Steps to derive a new FOV Take a new patrol image. Define the search area. (Just around the current FOV) Calculate a fine position in the search area. Current FOV New FOV

2007/12/08-10Hinode Workshop in China26 30 sec (typically) Flare Detection (FLD) XRT will take a FLD patrol image every 30 sec (typically). MDP derives a difference image between a new patrol image and the running averaged patrol image, and searches any intensity enhancement in it. Once a flare occurred, MDP informs the flare position to SOT and EIS also. (FLD function is useful to avoid strong irradiation to CCD.) difference average Flare has detected! Flare is lasting. Flare has terminated. FLD patrol image Averaged image

2007/12/08-10Hinode Workshop in China27 Pre-Flare Buffers Buffer0 Buffer1 Buffer2 Buffer3 “SW1” “SW2” “SW3” X X−100sX−200sX−300s time Total Buffer0 Buffer1 Buffer2 Buffer3 Data Recorder Four buffers is available for the image transfer to the Data Recorder. Buffer0 is prepared for the normal image transfer. Buffer1, 2, and 3 for ring buffers to freeze the pre-flare images.

2007/12/08-10Hinode Workshop in China28 On-board functions for XRT Obs. Mission Data Processor DR Image Compression Pre-Flare Buffers Autonomous Functions FLDARSAEC XRT Observation Tables Data Packet Edition SOT EIS Mission Data Processor (MDP) has many functions for XRT. Management of XRT exposures by “Observation Table” Autonomous Functions for XRT observations –Automatic Exposure-duration Control (AEC) –Automatic Region Selector (ARS) –FLare Detection (FLD) Image processing –Edition of Image data packets –Image compression –Pre-Flare Buffers

2007/12/08-10Hinode Workshop in China29 Parameters of XRT Performance X-Ray Optics OpticsOptimized Wolter-I-like grazing incidence optics Focal length2708 mm Mirror micro-roughness6 Å expected (TBD; analysis ongoing) Aperture size> 340 mm Spatial resolution68 % of encircled energy in 2 arcsec (at keV) Wavelength range6–200 Å Effective area> 1.0 cm 2 at keV Visible Light Optics Focal length2708 mm Wavelength4305 Å (G-band) Focal Plane CCD Camera CCD deviceE2V 2048×2048 back-illuminated Pixel Size 13.5  m = 1.0 arcsec Field of view34×34 arcmin (capable of covering the whole Sun) Image readout500 kpixel/s

2007/12/08-10Hinode Workshop in China30 3. Coronal temperature diagnostics

2007/12/08-10Hinode Workshop in China31 Spectrum of Solar Corona Hotter plasma is brighter in short wavelengths. Spectrum of the solar corona is modeled as an optically thin plasma, and consists of a continuum and emission lines. XRT is a sensitivity around Å to observe a low temperature corona (100MK).

2007/12/08-10Hinode Workshop in China32 XRT analysis filters XRT has 9 X-ray filters and 1 visible light filter. Thin-Be Med-BeC-Poly Thin-Al -Poly Med-Al open G-band Thick-AlTi-Poly Thin-Al -Mesh Thick-Be open

2007/12/08-10Hinode Workshop in China33 XRT Response (Effective Area) Nine X-ray filters. Wide-wavelength coverage. To observe 100MK plasma, XRT has a sensitivity at 170 – 200Å with thin-Al-mesh.

2007/12/08-10Hinode Workshop in China34 * Coronal Intensity detected with XRT x = Coronal spectrum at a certain logT × XRT effective area = A wavelength distribution of the coronal intensity with logT detected with XRT.  We derive a total intensity of the corona at logT detected with XRT, by integrating it over wavelengths.  By plotting total intensities at several temperatures, … we derive a “temperature response: f filter (T)”.

2007/12/08-10Hinode Workshop in China35 filter ratio method

2007/12/08-10Hinode Workshop in China36 Filter ratio method Assumption : XRT observe same plasma with filter1 and filter2. filter ratio function The estimated temperature is the mean temperature. filter ratio method

2007/12/08-10Hinode Workshop in China37 Temperature Diagnostics with XRT Low-Temperature Structure around an AR

2007/12/08-10Hinode Workshop in China38 4. SUMARRY (1) XRT holds a unique position among solar SXR/EUV telescopes currently on orbit or being planned: * Continuous coverage of the entire temperature range in the corona for ≳ 1 MK plasmas … Capable of observing entire plasma processes that take place in the corona, with temperature diagnostic capability * High angular-resolution/contrast observations for high temperature ( ≳ 2 MK) plasmas Autonomous functions to support various observations of coronal dynamics.

2007/12/08-10Hinode Workshop in China39 4. SUMARRY (2) Structure and evolution of coronal magnetic fields and their associated temperatures can be investigated in great detail. Expected to serve as a key instrument for investigating photosphere-corona connection. At the same time, may have non-negligible impact on heliospheric study.