Lecture 2 Buoyancy. Fluid dynamics. Hot air balloon Buoyancy (in the Dead Sea) Cohesion (water bubble in space) Laminar flow.

Slides:



Advertisements
Similar presentations
Chapter 9 Fluids.
Advertisements

Chapter 14: Fluid mechanics
Buoyancy and Archimedes Principle Lecturer: Professor Stephen T
Liquids and Gasses Matter that “Flows”
Matter 1. Density: m – mass V – volume Units:
Chapter 15 Fluids. Pressure The same force applied over a smaller area results in greater pressure – think of poking a balloon with your finger and.
Lecture 2 Buoyancy. Fluid dynamics. Hot air balloon Buoyancy (in the Dead Sea) Cohesion (water bubble in space) Laminar flow.
Chapter 14: Fluid mechanics
L-14 Fluids [3] Fluids at rest  Fluid Statics Fluids at rest  Fluid Statics Why things float  Archimedes’ Principle Fluids in Motion  Fluid Dynamics.
Helium, H 2 and hot-air balloons and submarines have mass. Why don’t they fall down ? What is the force that makes them go up ? The Physics of Balloons.
Fluid Mechanics Chapter 9.
Fluids Review.
Fluids Physics 202 Professor Vogel (Professor Carkner’s notes, ed) Lecture 20.
Lecture 8b – States of Matter Fluid Copyright © 2009 Pearson Education, Inc.
Chapter 9 Solids and Fluids (c).
Chapter 14: Fluid mechanics
Chapter 15 Fluids.
Unit 3 - FLUID MECHANICS.
Buoyancy and Pressure Force: Weight: Buoyancy Archimedes Principle Pressure Formulas and Atmosphere.
Lecture 7 Flow of ideal liquid Viscosity Diffusion Surface Tension.
Fluid Mechanics Ellen Akers. Fluids A fluid is a substance that has the ability to flow and change its shape. Gases and liquids are both fluids. Liquids.
Terms Density Specific Gravity Pressure Gauge Pressure
L-14 Fluids [3]  Why things float  Fluids in Motion  Fluid Dynamics –Hydrodynamics –Aerodynamics.
AP Physics II.A – Fluid Mechanics.
Lecture Outline Chapter 9 College Physics, 7 th Edition Wilson / Buffa / Lou © 2010 Pearson Education, Inc.
Physics 1B03summer-Lecture 12 1 Day of Wrath Tuesday June 16 9:30-11:30 am CNH MC Questions, Cumulative.
Fluid Studies. What is a fluid? 4 An ideal fluid doesn’t compress, like most common liquids. 4 Gas has fluid-like properties, but is compressible unless.
Warm-up Pick up the free response at the door and begin working on it.
Fluid Mechanics Chapter 8.
Static Fluids.
Chapter 10 Fluids. Units of Chapter 10 Phases of Matter Density Pressure in Fluids Atmospheric Pressure and Gauge Pressure Pascal’s Principle Measurement.
Warm-up For light of a given frequency, ice has an index of refraction of 1.31 and water has an index of refraction of Find the critical angle θ.
1 SAL ENGG COLLGE ANDTECHNOLOGY AHMEDABAD Fluid Dynamics BY
L 13 Fluids [2]: Statics  fluids at rest  More on fluids at rest  How is atmospheric pressure measured?  Buoyancy: How can a steel boat float?
Solids & Fluids Relating Pressure to Solid & Fluid systems 01/30.
Density and Buoyancy. Float? Whether an object will float or not is dependent on the density of the object and the density of the fluid.
Physics 101: Lecture 18, Pg 1 Physics 101: Lecture 18 Fluids II Exam III Textbook Sections 9.6 – 9.8.
© 2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Fluids. Introduction The 3 most common states of matter are: –Solid: fixed shape and size (fixed volume) –Liquid: takes the shape of the container and.
Subdivisions of matter solidsliquidsgases rigidwill flowwill flow dense dense low density and incompressible and incompressible compressible fluids condensed.
1 Chapter 5 Fluids October 19: Balloons − Pressure and density.
Copyright © 2010 Pearson Education, Inc. Lecture Outline Chapter 15 Physics, 4 th Edition James S. Walker.
Fluid Mechanics Liquids and gases have the ability to flow
L 13 Fluids [2]: Statics  fluids at rest  More on fluids.  How can a steel boat float.  A ship can float in a cup of water!  Today’s weather Today’s.
FLUIDS A fluid is any substance that flows and conforms to the boundaries of its container. A fluid could be a gas or a liquid. An ideal fluid is assumed.
Lecture 17: Fluids II l Archimedes’ Principle (continued) l Continuity Equation l Bernoulli's Equation.
L 13 Fluids [2]: Fluid Statics  fluids at rest  More on fluids at rest  How is atmospheric pressure measured?  Buoyancy: How can a steel boat float?
L 13 Fluids - 2 Fluid Statics: fluids at rest
Introduction To Fluids. Density ρ = m/V ρ = m/V  ρ: density (kg/m 3 )  m: mass (kg)  V: volume (m 3 )
L 13 Fluids [2]: Statics  fluids at rest  More on fluids at rest  How is atmospheric pressure measured?  Today’s weather Today’s weather Today’s weather.
Fluid Mechanics Chapter 8. Fluids Ability to flow Ability to change shape Both liquids and gases Only liquids have definite volume.
Today (Chapter 10, Fluids)  Review for Exam 2 Tomorrow (Chapters 6-10)  Review Concepts from Tuesday  Continuity Equation  Bernoulli’s Equation  Applications/Examples.
Chapter 10 Fluids Pressure in Fluids Pressure is defined as the force per unit area. Pressure is a scalar; the units of pressure in the SI system.
Hello! I’m Chris Blake, your lecturer for the rest of semester
Chapter 14, Section 2 Buoyant Force
L 13 Fluids [2]: Statics  fluids at rest
Chapter 11 Fluids.
Relating Pressure to Solid & Fluid systems
Chapter 12 Section 2.
Physics 21.
Fluids Liquids and Gases Chapter 11.
3.2 Pressure and the Buoyant Force
Fluid Mechanics Liquids and gases have the ability to flow
Lecture Outline Chapter 15 Physics, 4th Edition James S. Walker
Announcements: Midterm 2 coming up Monday Nov. 12 , (two evening times, 5-6 pm or 6-7 pm), Olin 101. Material: Chapters 6 – 14 (through HW 14.1 (pressure)).
Fluid Mechanics – Buoyancy
Chapter 14, Section 2 Buoyant Force
Chapter 12 Section 2.
Chapter 15 Fluids.
Have out: Ch. 14 Study guide 2 pieces of binder paper Red pen
Presentation transcript:

Lecture 2 Buoyancy. Fluid dynamics. Hot air balloon Buoyancy (in the Dead Sea) Cohesion (water bubble in space) Laminar flow

Vacuum gun Sealed tube, air pumped out Ping-pong ball What happens if we punch a little hole on one side? DEMO: Vacuum gun Atmospheric pressure pushes ball through tube and accelerates to high speed. Realistic calculation of ball speed is complicated and needs to take turbulent air and friction into account.

Buoyancy and the Archimedes’ principle y bottom y top h A A box of base A and height h is submerged in a liquid of density ρ. Archimedes’s principle: The liquid exerts a net force upward called buoyant force whose magnitude is equal to the weight of the displaced liquid. F top F bottom Net force by liquid:

In-class example: Hollow sphere A hollow sphere of iron (ρ Fe = 7800 kg/m 3 ) has a mass of 5 kg. What is the maximum diameter for this sphere to be completely submerged in water? (ρ water = 1000 kg/m 3 ) A.It will always be submerged. B.0.11 m C.0.21 m D.0.42 m E.It will always only float. FBFB mg The sphere sinks if

Density rule A hollow sphere of iron (ρ Fe = 7800 kg/m 3 ) has a mass of 5 kg. What is the maximum diameter necessary for this sphere to be fully submerged in water? (ρ water = 1000 kg/m 3 ) Answer: R = m. And what is the average density of this sphere? An object of density ρ object placed in a fluid of density ρ fluid sinks if ρ object > ρ fluid is in equilibrium anywhere in the fluid if ρ object = ρ fluid floats if ρ object ρ fluid This is why you cannot sink in the Dead Sea (ρ Dead Sea water = 1240 kg/m 3, ρ human body = 1062 kg/m 3 ) ! DEMO: Frozen helium balloon

Attraction between molecules Molecules in liquid attract each other (cohesive forces that keep liquid as such!) In the bulk: Net force on a molecule is zero. On the surface: Net force on a molecule is inward. …And this force is compensated by the incompressibility of the liquid. Wood floats on water because it is less dense than water. But a paper clip (metal, denser than water!) also floats in water… (?). Very small attraction by air molecules.

Surface tension Overall, the liquid doesn’t “like” surface molecules because they try to compress it. Liquid adopts the shape that minimizes the surface area. Any attempt to increase this area is opposed by a restoring force. The surface of a liquid behaves like an elastic membrane. The weight of the paper clip is small enough to be balanced by the elastic forces due to surface tension.

Drops and bubbles Water drops are spherical (shape with minimum area for a given volume) Adding soap to water decreases surface tension. This is useful to: Force water through the small spaces between cloth fibers Make bubbles! (Large area and small bulk)

How wet is water? Molecules in a liquid are also attracted to the medium it is in contact with, like the walls of the container (adhesive forces). Water in a glass Water in wax- or teflon-coated glass F adhesive > F cohesive F adhesive < F cohesive Or: surface tension in air-liquid interface is larger/smaller than surface tension in wall-liquid interface

Fluid flow Laminar flow: no mixing between layers Turbulent flow: a mess…

Dry water, wet water Real (wet) fluid: friction with walls and between layers (viscosity) Slower near the walls Faster in the center Ideal (dry) fluid: no friction (no viscosity) Same speed everywhere Within the case of laminar flow:

Flow rate Consider a laminar, steady flow of an ideal, incompressible fluid at speed v though a tube of cross-sectional area A Volume flow rate A dx = v dt Mass flow rate

Continuity equation A1A1 A2A2 v1 v1 v2v2 The mass flow rate must be the same at any point along the tube (otherwise, fluid would be accumulating or disappearing somewhere) If fluid is incompressible (constant density): ρ1 ρ1 ρ2 ρ2

Thin tube, large speed Thick tube, small speed Incompressible fluid:

Example: Garden hose When you use your garden faucet to fill your 3 gallon watering can, it takes 15 seconds. You then attach your 3 cm thick garden hose fitted with a nozzle with 40 holes at the end. You turn on the water, and 4 seconds later water spurts through the nozzle. When you hold the nozzle horizontally at waist level (1 m from the ground), you can water plants that are 5 m away. a)How long is the hose? b)How big are the openings in the nozzle? Volume flow rate

When you use your garden faucet to fill your 3 gallon watering can, it takes 15 seconds. You then attach your 3 cm thick garden hose fitted with a nozzle with 40 holes at the end. You turn on the water, and 4 seconds later water spurts through the nozzle. When you hold the nozzle horizontally at waist level (1 m from the ground), you can water plants that are 5 m away. a)How long is the hose? b)How big are the openings in the nozzle? We use kinematics to determine v nozzle : x h