Lone pairs repel more strongly than bonding pairs!!!

Slides:



Advertisements
Similar presentations
Section 8.4 Molecular Shapes
Advertisements

Molecular Geometry and Bonding Theories. The properties of a molecule depend on its shape and and the nature of its bonds. In this unit, we will discuss.
Molecular Geometry Lewis structures show the number and type of bonds between atoms in a molecule. –All atoms are drawn in the same plane (the paper).
Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10.
Ch 6.5 Molecular Geometry.
Chapter 9 Molecular Geometry and Bonding Theories.
Chapter 9 MoCu. VSEPR Theory Electron pairs around a central atom arrange themselves so that they can be as far apart as possible from each other.
AP Chemistry CH 9 COVALENT BONDING ORBITALS.
Molecular Geometry and Bonding Theories
Covalent Bonding: Orbitals. Copyright © Houghton Mifflin Company. All rights reserved. 14a–2 The Central Themes of VB Theory Basic Principle A covalent.
1 Five Basic Geometries Linear Trigonal Octahedral Trigonal bipyramidal Tetrahedral.
Molecular Geometry (Shapes of Molecules)
Carvone Bucky ball Molecular Geometry Chapter 8 Part 2.
Chapter 9 Molecular Geometry. Introduction 1.Lewis Structures help us understand the compositions of molecules & their covalent bonds, but not their overall.
Shapes of molecules & ions. VSEPR theory VSEPR - the Valence Shell Electron Pair Repulsion theory is used to obtain the shape of simple molecules and.
Properties of Carbon Element
Molecular Geometry and VSEPR Theory. VSEPR Theory Valence Shell Electron Pair Repulsion Theory States that electron pairs repel each other and assume.
Molecular Geometry bond length,angledetermined experimentally Lewis structures bonding geometry VSEPR Valence ShellElectronPairRepulsion octahedron 90.
Molecular Shape Section 9.4
Shapes of molecules 1) sketch the Lewis structure 2) locate the central atom 3) count regions of electron density around the central atom double/triple.
Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10.
Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Copyright © The McGraw-Hill Companies, Inc.  Permission required.
Chapter 8. Two Simple Theories of Covalent Bonding  Valence Shell Electron Pair Repulsion Theory __________ R. J. Gillespie ’s  Valence Bond Theory.
CREATE "In this tutorial we will investigate the shapes of simple covalent molecules Specifically, we will be learning about something called VSEPR.
Molecular Geometries and Bonding © 2009, Prentice-Hall, Inc. Chapter 9 Molecular Geometries and Bonding Theories Chemistry, The Central Science, 11th edition.
Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 9 Copyright © The McGraw-Hill Companies, Inc.  Permission required.
IIIIII II. Molecular Geometry Ch. 9 – Molecular Structure.
Covalent Bonding Shapes VALENCE SHEELL ELECTRON PAIR REPULSION
Molecular Structure Molecular geometry is the general shape of a molecule or the arrangement of atoms in three dimensional space. Physical and chemical.
VSEPR. This is the shape that CO 2 makes. 1. Linear 2. Bent 3. Trigonal planar 4. Tetrahedral 5. Trigonal pyramidal 6. Trigonal bipyramidal 7. See-saw.
Section 8.13 Molecular Structure: The VSEPR Model VSEPR: Valence Shell Electron-Pair Repulsion. ▪Used to predict a 3-dimensional shape of a molecule ▪Based.
Chapter 9 Molecular Geometries and Bonding Theories
Lewis Structures, VSPER, Electron Domain and Molecular Geometry, Hybridization.
Molecular Geometry and Bonding Theories
Chapter 9 Bonding II: Molecular Geometry and Bonding Theories
Chapter 9 Notes AP CHEMISTRY Galster.
Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 9 Copyright © The McGraw-Hill Companies, Inc.  Permission required.
Molecular Geometry and Bonding Theories
Bond Polarity Electronegativity
Molecular Geometry and Bonding Theories.
bond angles: the angles made by the lines joining
Unit 2.3: Chemical Bonding
Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Copyright © The McGraw-Hill Companies, Inc.  Permission required.
Arrangement of Two Electron Pairs on Be
Valence Shell Electron Pair Repulsion Theory
Unit 4 Bonding Theories.
TOPIC: Molecular Geometry (Shapes of Molecules) Essential Question: How do you determine the different shapes of molecules?
VSEPR Pronounced vesper…a vespa for her A vest purrs???
Bonding Groups 2 Nonbonding Pairs Examples; BeH2 CO2 HCN
Ch. 6 – Molecular Structure
Molecular Geometry bond length, angle determined experimentally
Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 9 Copyright © The McGraw-Hill Companies, Inc.  Permission required.
Bellwork Monday Draw the following Lewis dot structures. CCl4 NH4+
II. Molecular Geometry (p. 183 – 187)
Chapter 6 – 3 Molecular Geometry (p. 214 – 218)
Ch. 6 – Molecular Structure
Molecular Structure Molecular Geometry.
Molecular Geometry bond length, angle determined experimentally
Molecular Geometry 11/8 Opener:
Ch. 6.5 Molecular Structure
Molecular Structure II. Molecular Geometry.
Objectives. Objectives OK State summary page Objectives To understand the VSEPR theory model To learn to predict electronic geometries from the number.
Molecular Geometry bond length, angle determined experimentally
Molecular Geometry bond length, angle determined experimentally
II. Molecular Geometry (p. 183 – 187)
6.5 VSEPR Theory and Molecular Shapes
II. Molecular Geometry (p. 183 – 187)
II. Molecular Geometry (p. 183 – 187)
CO2 Lewis Dot Structure VSEPR VB O=C=O
Polar and Non-polar Covalent Bonds
Presentation transcript:

Lone pairs repel more strongly than bonding pairs!!! VSEPR Theory Types of e- Pairs Bonding pairs - form bonds Lone pairs - nonbonding electrons Lone pairs repel more strongly than bonding pairs!!! Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem

VSEPR Theory Lone pairs reduce the bond angle between atoms. Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem

Determining Molecular Shape Draw the Lewis Diagram. Tally up e- pairs on central atom. double/triple bonds = ONE pair Shape is determined by the # of bonding pairs and lone pairs. Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem

Common Molecular Shapes 2 total 2 bond 0 lone LINEAR 180° B A BeH2 Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem

Common Molecular Shapes 3 total 3 bond 0 lone B A BF3 TRIGONAL PLANAR 120° Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem

Common Molecular Shapes 3 total 2 bond 1 lone SO2 BENT <120° Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem

Common Molecular Shapes B A 4 total 4 bond 0 lone CH4 TETRAHEDRAL 109.5° Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem

Common Molecular Shapes 4 total 3 bond 1 lone NH3 TRIGONAL PYRAMIDAL 107° Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem

Common Molecular Shapes 4 total 2 bond 2 lone H2O BENT 104.5° Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem

F P F F 107° Examples TRIGONAL PYRAMIDAL 4 total 3 bond 1 lone PF3 Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem

O C O 180° Examples LINEAR 2 total 2 bond 0 lone CO2 Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem

CH4 C H C H molecular molecular structural formula shape formula ball-and-stick model tetrahedral shape of methane tetrahedron

Methane & Carbon Tetrachloride molecular formula structural formula molecular shape ball-and-stick model C H H 109.5o C CH4 The molecular geometry is predicted by first writing the Lewis structure, then using the VSEPR model to determine the electron-domain geometry, and finally focusing on the atoms themselves to describe the molecular structure. space-filling model C Cl CCl4

Molecular Geometry Trigonal planar Linear Tetrahedral Bent Trigonal pyramidal H2O CH4 AsCl3 AsF5 BeH2 BF3 CO2

N H .. .. C H O .. H H .. O CH4, methane NH3, ammonia H2O, water O lone pair electrons O O O3, ozone

Molecular Shapes Three atoms (AB2) Linear (180o) Bent B A linear Four atoms (AB3) Trigonal planar (120o) Trigonal pyramidal T-shaped B A trigonal planar Five atoms (AB4) Tetrahedral (109.47o) Square planar Seesaw B A tetrahedral Bailar, Moeller, Kleinberg, Guss, Castellion, Metz, Chemistry, 1984, page 313.

Bonding and Shape of Molecules Number of Bonds Number of Unshared Pairs Covalent Structure Shape Examples 2 3 4 1 2 -Be- Linear Trigonal planar Tetrahedral Pyramidal Bent BeCl2 BF3 CH4, SiCl4 NH3, PCl3 H2O, H2S, SCl2 B C N : O :

Molecular Shapes AB2 Linear AB3 Trigonal planar AB3E Angular or Bent Tetrahedral AB3E Trigonal pyramidal AB3E2 Angular or Bent AB5 Trigonal bipyramidal AB4E Irregular tetrahedral (see saw) AB3E2 T-shaped AB2E3 Linear AB6 Octahedral AB6E Square pyramidal AB5E2 Square planar

The VSEPR Model .. .. The Shapes of Some Simple ABn Molecules Linear Bent Trigonal planar Trigonal pyramidal O C O S .. F N SF6 Students often confuse electron-domain geometry with molecular geometry. You must stress that the molecular geometry is a consequence of the electron domain geometry. The best arrangement of a given number of electron domains is the one that minimizes the repulsions among them. .. O S SO2 Brown, LeMay, Bursten, Chemistry The Central Science, 2000, page 305

Molecular Shapes AB2 Linear AB3 Trigonal planar AB2E Angular or Bent pyramidal AB4 Tetrahedral (Source: R.J. Gillespie, J. Chem. Educ., 40, 295, 1963.) AB2E2 Angular or Bent

Geometry of Covalent Molecules ABn, and ABnEm Shared Electron Pairs Unshared Electron Pairs Type Formula Ideal Geometry Observed Molecular Shape Examples AB2 AB2E AB2E2 AB2E3 AB3 AB3E AB3E2 AB4 AB4E AB4E2 AB5 AB5E AB6 2 3 4 5 6 1 2 3 Linear Trigonal planar Tetrahedral Trigonal bipyramidal Triangular bipyramidal Octahedral Linear Angular, or bent Trigonal planar Triangular pyramidal T-shaped Tetrahedral Irregular tetrahedral (or “see-saw”) Square planar Triangular bipyramidal Square pyramidal Octahedral CdBr2 SnCl2, PbI2 OH2, OF2, SCl2, TeI2 XeF2 BCl3, BF3, GaI3 NH3, NF3, PCl3, AsBr3 ClF3, BrF3 CH4, SiCl4, SnBr4, ZrI4 SF4, SeCl4, TeBr4 XeF4 PF5, PCl5(g), SbF5 ClF3, BrF3, IF5 SF6, SeF6, Te(OH)6, MoF6 Bailar, Moeller, Kleinberg, Guss, Castellion, Metz, Chemistry, 1984, page 317.

Electron-Domain Geometries Number of Electron Domains Arrangement of Electron Domains Electron-Domain Geometry Predicted Bond Angles 2 3 4 B A Linear Trigonal planar Tetrahedral 180o 120o 109.5o B A B A

Number of electron domains 4 3 4 Acetic Acid, CH3COOH H O H C C O H H Number of electron domains 4 3 4 Trigonal planar Electron-domain geometry Tetrahedral Tetrahedral Predicted bond angles 109.5o 120o 109.5o Hybridization of central atom sp3 sp2 none Brown, LeMay, Bursten, Chemistry The Central Science, 2000, page 314

First, the formation of BeH2 using pure s and p orbitals. Be = 1s22s2 H Be BeH2 H s p No overlap = no bond! atomic orbitals atomic orbitals The formation of BeH2 using hybridized orbitals. Be H s p atomic orbitals Be H hybrid orbitals Be s p Be BeH2 sp p All hybridized bonds have equal strength and have orbitals with identical energies.

sp hybrid orbitals shown together Ground-state Be atom 1s 2s 2p Be atom with one electron “promoted” sp hybrid orbitals Energy 1s sp 2p Be atom of BeH2 orbital diagram px py pz n = 1 n = 2 s two sp hybrid orbitals s orbital p orbital hybridize H Be sp hybrid orbitals shown together (large lobes only)

sp2 hybrid orbitals shown together Ground-state B atom 2s 2p 2s 2p B atom with one electron “promoted” sp2 hybrid orbitals Energy sp2 2p px py pz s B atom of BH3 orbital diagram p orbitals H B three sps hybrid orbitals sp2 hybrid orbitals shown together (large lobes only) hybridize s orbital

Carbon 1s22s22p2 Carbon could only make two bonds if no hybridization occurs. However, carbon can make four equivalent bonds. B A sp3 hybrid orbitals Energy px py pz sp3 s C atom of CH4 orbital diagram Brown, LeMay, Bursten, Chemistry The Central Science, 2000, page 321

Hybridization Involving d Orbitals promote 3s 3p 3d 3s 3p 3d unhybridized P atom P = [Ne]3s23p3 vacant d orbitals hybridize A Be Ba F P five sp3d orbitals 3d degenerate orbitals (all EQUAL) Trigonal bipyramidal

Multiple Bonds 2s 2p 2s 2p sp2 2p C2H4, ethene H C promote hybridize 2s 2p 2s 2p sp2 2p C2H4, ethene C H one s bond and one p bond H C s H C Two lobes of one p bond Brown, LeMay, Bursten, Chemistry The Central Science, 2000, page 325-326

Multiple Bonds C 2s 2p 2s 2p sp2 2p C2H4, ethene H C H promote hybridize 2s 2p 2s 2p sp2 2p C2H4, ethene p C H H sp2 one s bond and one p bond H C s H C Two lobes of one p bond Brown, LeMay, Bursten, Chemistry The Central Science, 2000, page 325-326

p bond Internuclear axis p p