Chapter 29 Reflection & Refraction May 27 – 30 Mr. Gaydos.

Slides:



Advertisements
Similar presentations
Properties of Light.
Advertisements

Chapter 29 Reflection and Refraction
Conceptual Physics Chapter 29
All About Light. Light is a part of the electromagnetic spectrum.
Foundations of Physics
Chapter 15 Pretest Light and Refraction
1 UCT PHY1025F: Geometric Optics Physics 1025F Geometric Optics Dr. Steve Peterson OPTICS.
LIGHT A FORM OF ELECTROMAGNETIC RADIATION THAT STIMULATES THE EYE.
Physics Announcements WebAssign – –No Chapter 26 Homework –Chapter 28 due next Wednesday Exam 3 Corrections due This Wed, Apr 25 Final Exam May.
Physics Announcements
Reflection and Refraction Light interacts with matter Interaction begins at surface and depends on –Smoothness of surface –Nature of the material –Angle.
Chapter 29 – Reflection & Refraction
Reflection and Refraction of Light
© 2010 Pearson Education, Inc. Conceptual Physics 11 th Edition Chapter 28: REFLECTION & REFRACTION Reflection Principle of Least Time Law of Reflection.
Reflection and Refraction Chapter 29. Reflection Reflection – some or all of a wave bounces back into the first medium when hitting a boundary of a second.
Reflection and Refraction Chapter 29. Reflection When a wave reaches a boundary between two media, some or all of the wave bounces back into the first.
The wheel that strikes the grass first slows first, causing the direction to change. Part of the wave strikes the surface first and therefore slows.
REFRACTION (Bending of Light) Light slows down or speeds up when it enters and leaves another material.
1 GEOMETRIC OPTICS I. What is GEOMTERIC OPTICS In geometric optics, LIGHT is treated as imaginary rays. How these rays interact with at the interface of.
Refraction & Lenses Chapter 18. Refraction of Light n Look at the surface of a swimming pool n Objects look distorted n Light bends as it goes from one.
Refraction and Snell’s Law. Intro to Refraction Take 3 cups from the front, labeled 1,2,3. Observe each straw through the side of the cup as you slowly.
Chapter 19 – Optics Jennie L. Borders.
Light So far when we have talked about waves we have talked about sound waves. Light is a special type of wave.
Refraction is the change of direction of a light wave caused by a change in speed as the wave crosses a boundary between materials.
Optics 2: REFRACTION & LENSES. REFRACTION Refraction: is the bending of waves because of the change of speed of a wave when it passes from one medium.
Ch. 17 Reflection and Refraction
Mirror and Lens Notes.
Reflection and Refraction
Light Part 2. Reflection Occurs when waves traveling in one media reach a boundary with another media and bounce back into the first medium Total Reflection.
Lecture Six: The Nature of Light and the Laws of Geometric Optics
Refraction. The Optical Density of a Medium The better a medium transmits light, the lower its optical density. The slower light is transmitted by a medium,
TYPE OF IMAGE Real vs Virtual –Real Images can be seen on a piece of paper or screen placed because the focal point is in front of the mirror or behind.
1. How is the index of refraction calculated? How is light refracted as it speeds up? How is light refracted as it slows down? Index of refraction = speed.
Unit 11 : Part 1 Reflection and Refraction of Light.
Ch. 17 Reflection and Refraction Milbank High School.
Refraction: TIR and Dispersion AP Physics: M. Blachly Light and Optics.
Lecture Outline Chapter 22 College Physics, 7 th Edition Wilson / Buffa / Lou © 2010 Pearson Education, Inc.
Reflection and Refraction
Chapter 29 Reflection & Refraction May 16 – 23 Mr. Gaydos.
Chapter 17 Reflection & Refraction. Reflection When light rays bounce back off of a medium boundary.
Reflection Lab What is the relationship between the angle in and the angle out for light on a mirror?
Chapter 22 Reflection and Refraction of Light. The Particle Nature of Light “Particles” of light are called photons Each photon has a particular energy.
.. What Happened?? Look at the data you collected during the simulation Are the angles the same for every scenario? Why is there a difference?
Physics 213 General Physics Lecture Last Meeting: Electromagnetic Waves, Maxwell Equations Today: Reflection and Refraction of Light.
The Nature of Light. Light Can Act Like Waves or In 1801 Thomas Young an English scientist did an experiment. –Double slit experiment Passed a beam of.
The Bending of Light and Lenses Chapter 18 and 19.
The law of reflection: The law of refraction: Image formation
1 By Mike Maloney © 2003 Mike Maloney2 Light as a Ray Light very often travels in straight lines. We represent light using rays, which are straight lines.
Refraction of Light Refraction Refraction –Refraction occurs when light waves traveling from one medium to another with a different density bend. –The.
Chapter 19. Reflection The smooth surface of the lake reflects light rays so that the observer sees an inverted image of the landscape.
Reflection and Refraction. Reflection Reflection – some or all of a wave bounces back into the first medium when hitting a boundary of a second medium.
Refraction and Lenses. Refraction is the bending of light as it moves from one medium to a medium with a different optical density. This bending occurs.
Reflection and Refraction of Light From “College Physics” Serway and Faughn with modifications.
Chapter 19 Light, Mirrors, and Lenses Section 1 Properties of Light Pages
17.1 Reflection and Refraction. Chapter 17 Objectives  Describe the functions of convex and concave lenses, a prism, and a flat mirror.  Describe how.
Chapter 29: Reflection and Refraction. Reflection Occurs when a wave hits a boundary and bounces back into the first medium Metal surfaces are rigid to.
Mirrors and Refraction Chapter , Mirrors If a candle flame is placed in front of a plane (flat) mirror, rays of light from the candle.
Reflection & Refraction Learning Targets: L3: Reflection L4: Refraction – Definition and Ray Dig L5: Critical Angle & Total Internal Reflection L6: Snell’s.
Reflection and Refraction. The Law of Reflection – incident rays and reflected rays make equal angles with a line perpendicular to the surface called.
-Atmospheric Refraction -Total Internal Reflection
Notes 23.1: Optics and Reflection
Reflection and Refraction
Reflection, Refraction and Lenses Ch. 29,30
Refraction.
Reflection & Refraction
Reflection and Refraction of Waves
Reflection and Refraction
Reflection and Refraction
Refraction and Snell’s Law
The law of reflection: The law of refraction: Image formation
Presentation transcript:

Chapter 29 Reflection & Refraction May 27 – 30 Mr. Gaydos

Chapter 29 Notes I. Introduction: A. Reflection: Waves incident upon a surface, some or all of the energy bounces back. B. Refraction: Waves incident upon a medium, waves are bent as they enter & travel within the medium.

Chapter 29 Outline Reflection Video Gos&list=PL5C55F4122B03492C Gos&list=PL5C55F4122B03492C

Chapter 29 Notes II. Reflection (Section 29.1) A. When waves strike a boundary surface between two mediums, some or all of the energy bounces back. They Reflect off of the Boundary. B. The amount of energy reflected back vs. the amount of energy transmitted depends on the composition of each medium. C. Total Reflection: Boundary between Medium 1 & 2 very rigid; Medium #2 >> dense than Medium #1 D. Partial Reflection: Boundary between Medium 1 & 2 not very rigid; Medium #2 = or < dense than Medium #1

Chapter 29 Notes III. Law of Reflection (Section 29.2) A. The Law: Angle of Incidence (Ѳ i) = Angle of Reflection (Ѳ r) B. What does this mean? A wave leaves a reflecting boundary at the same angle it arrives C. Boundary Conditions 1. Rigid or Flexible? 1. Smooth or Rough? D. Ray Diagrams E. Chapter 29 Problem Set #1

Chapter 29 Notes IV. Mirrors: Three Types (Section 29.3) A. Plane (Flat) Mirror 1. Reflecting surface is Flat 2. Line of Sight (LoS) 3. Image Position (Relative to object’s location) 4. Image Size 5. Image’s Orientation

Chapter 29 Notes IV. Mirrors: Three Types (Section 29.3) B. Concave Mirror 1. Reflecting surface is Bowed away from object 2. Line of Sight (LoS) 3. Image Position (Relative to object’s location) 4. Image Size 5. Image’s Orientation

Chapter 29 Notes IV. Mirrors: Three Types (Section 29.3) C. Convex Mirror 1. Reflecting surface is Bowed towards from object 2. Line of Sight (LoS) 3. Image Position (Relative to object’s location) 4. Image Size 5. Image’s Orientation

Chapter 29 Notes V. Diffuse Reflection (Section 29.4) A. Light Reflected off of a “Rough” surface. B. Light is reflected in many directions. C. Can see light easily from Rough surface but need to be at correct angle to see reflected light from a mirror. D. Law of Reflection still holds but so many Boundaries, Normals, Angles of Incidence (Ѳ i), Angles of Reflection (Ѳ r) on rough surface that it may appear that the Law doesn’t hold but it does at the microscopic level

Chapter 29 Notes VI. Reflection of Sound (Section 29.5) A. Sound Waves are reflected and are subject to the same Law of Reflection as is Light. B. Multiple reflections of sound are called reverberations.

Chapter 29 Notes VII. Refraction (Section 29.6) A. The bending of a wave front when one side of the wave moves slower than the rest of the wave. B. As a wave front encounters a boundary, it will bend in towards the extension of the Normal OR outwards away from the Normal depending on the density of the two mediums separated by the boundary. C. Rays can be drawn perpendicular to the wave fronts to model wave movement & refraction.

Chapter 29 Notes VIII. Refraction of Sound (Section 29.7) A. Sound waves are bent due to uneven temperatures that exist in the medium in which sound waves travel. B. Sound travels faster in warm air. C. Sound can be heard at night better than during the day? Yes because the sound waves are bent down toward the ground which allows them to travel farther

Chapter 29 Notes IX. Refraction of Light (Section 29.8) A. Light waves bend when traveling from one medium to another B. Index of Refraction: 1. The mathematical relationship that defines the speed of light in a vacuum vs. its speed in a medium. 2. n = speed of light in a vacuum/speed of light in a material n = LSvac/LSmed C. Snell’s Law: n sin Ѳ = n’ sin Ѳ’

Chapter 29 Notes X. Atmospheric Refraction (Section 29.9) A. Speed of Light only 0.03% less than in a vacuum. B. On Hot days Refraction can be noticeable, Mirages may form, especially on hot streets. C. Even though the sun has set, observer can still see it. Why?

Chapter 29 Notes XI. Dispersion in a Prism A. Light slows down when traveling in a medium. B. The degree of “speed reduction” depends on the medium and the frequency of light. C. Since different frequencies of light travel at different speeds in a medium, they will be bent at different angles. D. This difference in angle results in the colors in white light being separated. E. This process is called dispersion F. The color violet is bent the most, red is bent the least.

Chapter 29 Notes XII. The Rainbow: A. Dispersion on an atmospheric scale. B. Water Droplets in the atmosphere act as a multitude of tiny prisms. C. If viewed from an aircraft high enough the rain “bow” would be a complete circle. We see a bow because the ground gets in the way.

Chapter 29 Notes XIII. Total Internal Reflection (Section 29.12) A. Condition when light rays cannot exit a medium but are only reflected within the medium. B. Critical Angle: a. The angle at which a beam of light no longer emerges from a given medium. b. For water/air interface, the critical angle from the normal is 48 °.

Chapter 29 Notes XIII. Total Internal Reflection (Section 29.12) C. Diamonds 1. Smallest Critical Angle 2. Small angle results in most light entering a diamond being totally internally reflected. 3. Light entering through one facet (face) is internally reflected many times before exiting through another facet. D. Optical Fibers: 1. Light Pipes 2. Employs total internal reflection to carry light along discrete, dedicated paths much like metallic wires but without the weight, loss and cost.

Discovery Key Terms A. Line of Sight: The straight line along which a light ray passes from an object to our eyes allowing us to see the object. B. Reflection: The bouncing of light off of a Boundary Surface. C. Law of Reflection (Ray Diagram) 1. Angle of Incidence (Ѳ i) = Angle of Reflection (Ѳ r) (in Degrees or Radians) 2. Normal to Reflecting Boundary: A line at 90 degrees to the Boundary Surface 3. Angle of Incidence (Ѳ i): The angle an incident light ray makes with the Normal to the boundary surface 4. Angle of Reflection (Ѳ r): The angle a reflective light ray makes with the Normal to the boundary surface

Discovery D. Mirror: A Reflecting Boundary 1. Plane (Flat): A mirror whose reflecting surface is flat. 2. Concave: A mirror whose reflecting surface is curved away from the object. 3. Convex: A mirror whose reflecting surface is curved towards the object. E. Light Pollution: The uncontrolled spread of light where it is not beneficial or desired. F. Noise Pollution: The uncontrolled spread of noise where it is not beneficial or desired.

Discovery G. Critical Angle: The minimum angle of incidence for which a light ray is totally reflected within a medium. H. Dispersion: The separation of light into colors arranged according to their frequency, by interaction with a prism or diffraction grating. I. Mirage: A floating image that appears in the distance and is due to the refraction of light in the earth’s atmosphere. J. Echo: Reflected Sound K. Reverberation: The persistence of sound, as in an echo, due to multiple reflections.

Discovery L. Total Internal Reflection: The 100% reflection (with no transmission) of light that strikes the boundary between two media at an angle greater than the critical angle. M. Virtual Image: An image formed through reflection or refraction that can be seen by an observer but cannot be projected on a screen because light from the object does not actually come to a focus. N. Wave Front: The crest, trough, or any continuous portion of a two dimensional or three dimensional wave in which the vibrations are all the same way at the same time. O. Field of View: The maximum area that an image can be viewed in a mirror by an observer.

Discovery P. Refraction: The bending of a wave front when one side of the wave moves slower than the rest of the wave. Q. Diffuse Reflection: The reflection of light rays from a rough surface that results in the light rays being reflected in many directions. R. Optical Fiber: A light Pipe that transports light along a fixed path much like a length of wire.