Lead ( Pb) Radius Experiment : PREX 208 208 Pb E = 1 GeV, electrons on lead Elastic Scattering Parity Violating Asymmetry Spokespersons Paul Souder Krishna.

Slides:



Advertisements
Similar presentations
PREX PAC 29 Jan 2006 R. Michaels Jefferson Lab Lead ( Pb) Radius Experiment : PREX Z of Weak Interaction : Clean Probe Couples Mainly to Neutrons ( T.W.
Advertisements

R. Michaels PREX at HE06 July 2006 Lead ( Pb) Radius Experiment : PREX Z of Weak Interaction : Clean Probe Couples Mainly to Neutrons ( T.W. Donnelly,
Lead ( Pb) Radius Experiment : PREX
R. Michaels, Jlab UGM, June, 2011 Lead ( Pb) Radius Experiment : PREX Pb E = 1 GeV, electrons on lead Elastic Scattering Parity Violating Asymmetry.
Robert Michaels PREX at Trento PREX Workshop 09 Physics Interpretation of PREX 208 Pb E = 1 GeV, electrons on lead Elastic Scattering Parity Violating.
R. Michaels, Jlab Seminar, Apr 27, 2011 Lead ( Pb) Radius Experiment : PREX Pb E = 1 GeV, electrons on lead Elastic Scattering Parity Violating.
Thomas Jefferson National Accelerator Facility
Robert J. Feuerbach Jefferson Lab Constructed from contributions from the HAPPEX Collaboration Hall A Collaboration Meeting December 5, 2005 HAPPEX-II.
Robert Michaels HAMC Hall A Analysis Workshop 09 C HAMC = Hall A Monte Carlo ROOT / C++ Design Somewhat like SAMC & genercone For HRS only. Uses LeRose.
Lead ( 208 Pb) Radius Experiment : PREX E = 1 GeV, Elastic Scattering Parity-Violating Asymmetry PREX : precise measurement of the density -dependence.
Measuring the Neutron and 3 He Spin Structure at Low Q 2 Vincent Sulkosky College of William and Mary, Williamsburg VA Experimental Overview The.
Lead ( 208 Pb) Radius Experiment : PREX E = 1 GeV, Elastic Scattering Parity-Violating Asymmetry PREX : density -dependence of the symmetry energy. Nuclear.
2010 PREx Run – Dithering & Compton Polarimetry Chun-Min Jen on behalf of the Hall-A JLab. Institution: Syracuse University, NY, 13244,
Measuring the Neutron and 3 He Spin Structure at Low Q 2 Vincent Sulkosky for the JLab Hall A Collaboration College of William and Mary, Williamsburg VA.
The Spin Structure of 3 He and the Neutron at Low Q 2 : A Measurement of the Extended GDH Integral Vincent Sulkosky (for the JLab Hall A Collaboration)
Lumi Analysis for HAPPEx III / PREX Presented by: Luis Mercado UMass - Amherst 5/18/2007.
Compton polarimetry for EIC Jefferson Lab Compton Polarimeters.
1 Electron Beam Polarimetry for EIC/eRHIC W. Lorenzon (Michigan) Introduction Polarimetry at HERA Lessons learned from HERA Polarimetry at EIC.
Noise Analysis for PREx - Pb Radius Experiment Presented by: Luis Mercado UMass - Amherst 6/20/2008.
Parity Violation in Electron Scattering Emlyn Hughes SLAC DOE Review June 2, 2004 *SLAC E122 *SLAC E158 *FUTURE.
PN12 Workshop JLab, Nov 2004 R. Michaels Jefferson Lab Parity Violating Neutron Densities Z of Weak Interaction : Clean Probe Couples Mainly to Neutrons.
PREX PAVI06 May 2006 R. Michaels Jefferson Lab Lead ( Pb) Radius Experiment : PREX Z of Weak Interaction : Clean Probe Couples Mainly to Neutrons ( T.W.
The PEPPo e - & e + polarization measurements E. Fanchini On behalf of the PEPPo collaboration POSIPOL 2012 Zeuthen 4-6 September E. Fanchini -Posipol.
Polarimetry of Proton Beams at RHIC A.Bazilevsky Summer Students Lectures June 17, 2010.
Collimator June 1-19, 2015HUGS The collimator is placed about 85 cm from the target and intercepts scattered electrons from 0.78° to 3.8° Water cooled.
Opportunities for Precision Measurements, New Physics Searches & Low Energy Fixed Target Expts at a Modified “FEL” Accelerator Complex R. D. Carlini 12/7/2011.
Z coll =590cm z targ,up =-75cm z targ,center =0cm z targ,down =75cm θ low =5.5mrad θ high =17mrad R inner =3.658cm R outer =11.306cm From center:From downstream:
Compton polarimetry for EIC Jefferson Lab Compton Polarimeters.
Crystal Ball Collaboration Meeting, Mainz, October 2007 Claire Tarbert, Univeristy of Edinburgh Coherent  0 Photoproduction on Nuclei Claire Tarbert,
Neutral pion photoproduction and neutron radii Dan Watts, Claire Tarbert University of Edinburgh Crystal Ball and A2 collaboration at MAMI Eurotag Meeting.
Presentation by T. Gogami 2015/6/15 (Mon). Equation state of neutron matter.
1/33CREX Workshop Jefferson Lab March 16-19, 2013 NASA/CXC/SAO.
Pb Electroweak Asymmetry in Elastic Electron-Nucleus Scattering : A measure of the neutron distribution PREX and CREX 48 Ca Neutron Skin Horowitz.
May 17, 2006Sebastian Baunack, PAVI06 The Parity Violation A4 Experiment at forward and backward angles Strange Form Factors The Mainz A4 Experiment Result.
Electromagnetic probes MAMI, Jefferson Lab & MAX-Lab Daniel Watts University of Edinburgh.
Proton Charge Form Factor Measurement E. Cisbani INFN Rome – Sanità Group and Italian National Institute of Health 113/Oct/2011E. Cisbani / Proton FF.
SLAC, September 25, 2009 Searching for a U -boson with a positron beam Bogdan Wojtsekhowski Thomas Jefferson National Accelerator Facility  The light.
Calorimetry for Deeply Virtual Compton Scattering in Hall A Alexandre Camsonne Hall A Jefferson Laboratory Workshop on General Purpose High Resolution.
April 23, 2006PV in Electron Scattering on H and He P. A. Souder Parity-Violating Electron Scattering on Hydrogen and Helium … and Strangeness in the Nucleon.
Compton polarimetry for EIC. Outline Polarized electron beam Compton process Compton polarimeters at Jefferson Laboratory – Parity experiments at Jlab.
Coulomb distortions in the Lead Radius Experiment (PREX) Tim Cooper (Univ. College Fraser Valley) C. J. Horowitz (Indiana)
(F.Cusanno, M.Iodice et al,Phys. Rev. Lett (2009). 670 keV FWHM  M. Iodice,F.Cusanno et al. Phys.Rev.Lett. 99, (2007) 12 C ( e,e’K )
PREX Issues. Outline New issue: souce systematics and Aug. 07 run. Update on old issues. Progress at SU.
Moller Polarimeter Q-weak: First direct measurement of the weak charge of the proton Nuruzzaman (
 0 life time analysis updates, preliminary results from Primex experiment 08/13/2007 I.Larin, Hall-B meeting.
R. Michaels PREX at PAVI 09 Lead ( Pb) Radius Experiment : PREX Pb E = 1 GeV, electrons on lead Elastic Scattering Parity Violating Asymmetry Spokespersons.
Symmetry energy in the neutron star equation of state and astrophysical observations David E. Álvarez C. Sept 2013 S. Kubis, D. Blaschke and T. Klaehn.
DIS-Parity: Measuring sin 2 θ W with Parity Violation in Deep Inelastic Scattering using Baseline Spectrometers at JLab 12 GeV Paul E. Reimer.
Parity Experiments and JLab Injector Riad Suleiman February 5, 2016.
Mott Electron Polarization Results Riad Suleiman July 10, 2013.
Thomas Jefferson National Accelerator Facility Operated by the Southeastern Universities Research Association for the U.S. Depart. Of Energy The Department.
Hall A Collab. Mtg, 6/ 2010R. Michaels, JLAB Lead ( 208 Pb) Radius Experiment : PREX E = 1 GeV, Elastic Scattering Parity-Violating Asymmetry PREX : precise.
Pb-Parity and Septum Update Presented by: Luis Mercado UMass - Amherst 12/05/2008 Thanks to Robert Michaels, Kent Pachke, Krishna Kumar, Dustin McNulty.
Parity Quality Beam (PQB) B-Team Meeting September 10, 2008.
Polarized Injector Update
Esperimenti sulla violazione di parita' presso i laboratori JLAB:
Radiative Corrections to PREX and QWEAK
Parity Violation Experiments & Beam Requirements
Sanghwa Park (Stony Brook) for the PREX/CREX Collaboration
Thomas Jefferson National Accelerator Facility
Parity Violation Experiments at JLEIC
Noise Analysis for PREx - Pb Radius Experiment
Accelerator Issues Raised in Hall A Parity Collaboration Meeting, April B-Team Meeting April 29, 2009.
Precision Measurement of η Radiative Decay Width via Primakoff Effect
Deep Inelastic Parity Robert Michaels, JLab Electroweak Physics
Lead ( Pb) Radius Experiment : PREX
Polarized Positrons at Jefferson Lab
A Precision Measurement of GEp/GMp with BLAST
Physics Interpretation of PREX
Parity – Violating Neutron Density Measurements : PREX, C-REX
Presentation transcript:

Lead ( Pb) Radius Experiment : PREX Pb E = 1 GeV, electrons on lead Elastic Scattering Parity Violating Asymmetry Spokespersons Paul Souder Krishna Kumar Robert Michaels Guido Urciuoli G.M. Urciuoli Hall A Collaboration Experiment

neutron weak charge >> proton weak charge is small, best observed by parity violation Electron - Nucleus Potential electromagneticaxial Neutron form factor Parity Violating Asymmetry Proton form factor A PV ~ 500 ±15ppb, Q 2 ~ 0.01 GeV 2

G.M. Urciuoli Reminder: Electromagnetic Scattering determines Pb 208 (charge distribution) 123

G.M. Urciuoli Z of weak interaction : sees the neutrons 0 proton neutron Electric charge 1 0 Weak charge Analysis is clean, like electromagnetic scattering: 1. Probes the entire nuclear volume 2. Perturbation theory applies

G.M. Urciuoli Neutron Densities Proton-Nucleus Elastic Pion, alpha, d Scattering Pion Photoproduction Magnetic scattering Theory Predictions Fit mostly by data other than neutron densities Involve strong probes Most spins couple to zero. Therefore, PREX is a powerful check of nuclear theory.

G.M. Urciuoli Nuclear Structure: Neutron density is a fundamental observable that remains elusive. Reflects poor understanding of symmetry energy of nuclear matter = the energy cost of n.m. density ratio proton/neutrons Slope unconstrained by data Adding R from Pb will eliminate the dispersion in plot. N 208

G.M. Urciuoli ( R.J. Furnstahl ) Measurement at one Q is sufficient to measure R 2 N Pins down the symmetry energy (1 parameter) PREX accuracy

G.M. Urciuoli PREX & Neutron Stars Crab Pulsar ( C.J. Horowitz, J. Piekarweicz ) R calibrates EOS of Neutron Rich Matter Combine PREX R with Obs. Neutron Star Radii Some Neutron Stars seem too Cold N N Crust Thickness Explain Glitches in Pulsar Frequency ? Strange star ? Quark Star ? Cooling by neutrino emission (URCA) 0.2 fm URCA probable, else not Phase Transition to “Exotic” Core ?

G.M. Urciuoli FP TM1 Solid Liquid Liquid/Solid Transition Density Thicker neutron skin in Pb means energy rises rapidly with density  Quickly favors uniform phase. Thick skin in Pb  low transition density in star. Neutron EOS and Neutron Star Crust Fig. from J.M. Lattimer & M. Prakash, Science 304 (2004) 536. Horowitz

G.M. Urciuoli Pb Radius vs Neutron Star Radius The 208 Pb radius constrains the pressure of neutron matter at subnuclear densities. The NS radius depends on the pressure at nuclear density and above. Important to have both low density and high density measurements to constrain density dependence of EOS. –If Pb radius is relatively large: EOS at low density is stiff with high P. If NS radius is small than high density EOS soft. –This softening of EOS with density could strongly suggest a transition to an exotic high density phase such as quark matter, strange matter, color superconductor, kaon condensate…

G.M. Urciuoli PREX Constrains Rapid Direct URCA Cooling of Neutron Stars Proton fraction Y p for matter in beta equilibrium depends on symmetry energy S(n). R n in Pb determines density dependence of S(n). The larger R n in Pb the lower the threshold mass for direct URCA cooling. If R n -R p <0.2 fm all EOS models do not have direct URCA in 1.4 M ¯ stars. If R n -R p >0.25 fm all models do have URCA in 1.4 M ¯ stars. R n -R p in 208 Pb If Y p > red line NS cools quickly via direct URCA reaction n p+e+ Horowitz

G.M. Urciuoli Atomic Parity Violation Low Q test of Standard Model Needs R to make further progress. 2 N APV Isotope Chain Experiments e.g. Berkeley Yb

G.M. Urciuoli Neutron Skin and Heavy – Ion Collisions Danielewicz, Lacey, and Lynch, Science 298 (2002) Impact on Heavy - Ion physics: constraints and predictions Imprint of the EOS left in the flow and fragmentation distribution.

G.M. Urciuoli Measured Asymmetry Weak Density at one Q 2 Neutron Density at one Q 2 Correct for Coulomb Distortions Small Corrections for G n E G s E MEC Assume Surface Thickness Good to 25% (MFT) Atomic Parity Violation Mean Field & Other Models Neutron Stars R n PREX Physics Impact Heavy I ons

G.M. Urciuoli Corrections to the Asymmetry are Mostly Negligible Horowitz, et.al. PRC Coulomb Distortions ~20% = the biggest correction. Transverse Asymmetry (to be measured) Strangeness Electric Form Factor of Neutron Parity Admixtures Dispersion Corrections Meson Exchange Currents Shape Dependence Isospin Corrections Radiative Corrections Excited States Target Impurities

G.M. Urciuoli Hall A at Jefferson Lab Polarized e - Source Hall A

G.M. Urciuoli PREX in Hall A at JLab CEBAF Hall A Pol. Source Lead Foil Target Spectometers

G.M. Urciuoli High Resolution Spectrometers Elastic Inelastic detector Q Dipole Quad Spectrometer Concept: Resolve Elastic target Left-Right symmetry to control transverse polarization systematic

Experimental Method Flux Integration Technique: HAPPEX: 2 MHz PREX: 850 MHz

G.M. Urciuoli controls effective analyzing power Tune residual linear pol. Slow helicity reversal Intensity Attenuator (charge Feedback) Polarized Source High P e High Q.E. Low A power Optical pumping of solid-state photocathode High Polarization Pockels cell allows rapid helicity flip Careful configuration to reduce beam asymmetries. Slow helicity reversal to further cancel beam asymmetries GaAS Photocatode

P I T A Effect Laser at Pol. Source Polarization Induced Transport Asymmetry where Transport Asymmetry Intensity Asymmetry drifts, but slope is ~ stable. Feedback on Important Systematic :

Intensity Feedback Adjustments for small phase shifts to make close to circular polarization Low jitter and high accuracy allows sub-ppm Cumulative charge asymmetry in ~ 1 hour In practice, aim for 0.1 ppm over duration of data-taking. ~ 2 hours HAPPEX

G.M. Urciuoli Beam Asymmetries A raw = A det - A Q +  E +  i  x i natural beam jitter (regression) beam modulation (dithering) Slopes from

G.M. Urciuoli “Energy” BPM BPM Y2 BPM Y1 BPM X1 BPM X2 Scale +/- 10 nm Position Diffs average to ~ 1 nm Good model for controlling laser systematics at source Accelerator setup (betatron matching, phase advance) Helicity Correlated Differences: Position, Angle, Energy slug “slug” = ~1 day running Spectacular results from HAPPEX-H show we can do PREX.

G.M. Urciuoli Integrating Detection PMT Calorimeter ADC Integrator electrons Integrate in 30 msec helicity period. Deadtime free. 18 bit ADC with < nonlinearity. Backgrounds & inelastics separated (HRS). Attempt to improve resolution by replacing Alzak mirrors in light guide with anodized Al or Silver. The x, y dimensions of the quartz determined from beam test data and MC (HAMC) simulations. (11 x 14 cm) Quartz thickness to be optimized with MC. New HRS optics tune focuses elastic events both in x & y at the PREx detector location. Actually two thin quartz detectors

G.M. Urciuoli

Lead Target Liquid Helium Coolant Pb C Diamond Backing: High Thermal Conductivity Negligible Systematics Beam, rastered 4 x 4 mm beam 5 days at 60 uA 1 shift at 80 uA 3 hrs at 100 uA Successfuly tested

Upgrade of Compton Polarimeter To reach 1% accuracy: Green Laser  Green Fabry-Perot cavity (increased sensitivity at low E) Integrating Method (removes some systematics of analyzing power) New Photon and Electron Detectors (new GSO photon calorimeter, FADC based photon integration DAQ) electrons Upgrade Møller polarimeter: 4 Tesla field saturated iron foil, new FADC DAQ Polarimetry

G.M. Urciuoli

Transverse Polarization HRS-LeftHRS-Right Transverse AsymmetrySystematic Error for Parity “Error in” Left-right apparatus asymmetry Need < measure in ~ 1 hr (+ 8 hr setup) Theory est. (Afanasev) Transverse polarization Part I: Left/Right Asymmetry correctionsyst. err. < Control w/ slow feedback on polarized source solenoids.

G.M. Urciuoli Transverse Polarization HRS-LeftHRS-Right Vertical misalignment Systematic Error for Parity Horizontal polarization e.g. from (g-2) Part II: Up/Down Asymmetry ( Note, beam width is very tiny up/down misalignment Measured in situ using 2 -piece detector. Study alignment with tracking & M.C. Wien angle feedback ( ) Need ) <<

G.M. Urciuoli

Figure of Merit M = 1/E * 1/sqrt(R) * sqrt(1 + B/S) where, E = A_T enhancement for A_T hole events = 50. R = Ratio of A_T hole detector to main Pb detector event rates B/S = Ratio of bkgd under the A_T hole events to A_T signal The optimum A_T detector dimension is ~7.6cm in x by 0.8cm in y. This gives Figure of Merit = and error inflation ~ A_T detector design

G.M. Urciuoli Noise Need 100 ppm per window pair Position noise already good enough New 18-bit ADCs  Will improve BCM noise. Careful about cable runs, PMTs, grounds.  Will improve detector noise. Tests with Luminosity Monitor to demonstrate capability.

PREX Workshop Aug 08 ~ 50 ppm noise per pulse  milestone for electronics Asymmetries in Lumi Monitors after beam noise subtraction Jan 2008 Data ( need < 100 ppm)

PREX is an extremely challenging experiment: –A PV ≈ 500 ± 15 ppb. –1% polarimetry. –Helicity correlated beam asymmetry < 100 ± 10 ppb. –Beam position differences < 1 ± 0.1 nm. –Transverse beam polarization < 1%. –Noise < 100 ppm –(Not melting) Lead Target –Forward angle detection  Septum magnet –Precision measurement of Q 2 : ± 0.7%  ± 0.02° accuracy in spectrometer angles However HAPPEX & test runs have demonstrated its feasibility. It will run in March-May 2010 and will measure the lead neutron radius with an unprecedented accuracy (1%). This result will have an impact on many other Physics fields (neutron stars, APV, heavy ions …). PREX: Summary

G.M. Urciuoli

Spares G.M. Urciuoli

Optimum Kinematics for Lead Parity: E = 850 MeV, = 0.5 ppm. Accuracy in Asy 3% n Fig. of merit Min. error in R maximize: 1 month run 1% in R n

G.M. Urciuoli Optimization for Barium -- of possible direct use for Atomic PV 1 GeV optimum

G.M. Urciuoli X (cavity) nmY (cavity) nm X (stripline) nmY (stripline) nm Redundant Position Measurements at the ~1 nm level (Helicity – correlated differences averaged over ~1 day)

Integrating Detection Integrate in 30 msec helicity period. Deadtime free. 18 bit ADC with < nonlinearity. Backgrounds & inelastics must be separeted (HRS). electrons ADC Integrator PMT Quartz / Tungsten Calorimeter (Also a thin quartz detector upstream of this) Attempt to improve resolution by replacing Alzak mirrors in light guide with anodized Al or Silver. The x, y dimensions of the quartz determined from beam test data and MC (HAMC) simulations. (11 x 14 cm) Quartz thickness to be optimized with MC. New HRS optics tune focuses elastic events both in x & y at the PREx detector location.