Navigation Systems and Their Implementation Michael Bekkala Michael Blair Michael Carpenter Matthew Guibord Abhinav Parvataneni Dr. Shanker Balasubramaniam.

Slides:



Advertisements
Similar presentations
Introduction to the Global Positioning System
Advertisements

Global Positioning Systems
Global Positioning Systems (GPS) for Precision Farming
Dr. Shanker Balasubramaniam
Introduction to NAVSTAR GPS Introduction to NAVSTAR GPS.
GLOBAL POSITIONING SYSTEM FOR ENVIRONMENTAL MANAGEMENT.
Background Accessibility Popularity of GPS and INS –Cell phones Apple iPhone, Blackberry, Android platform –Nintendo Wii Wii Remote, MotionPlus.
GTECH 201 Session 08 GPS.
Per R. Bodin Global Posision System GPS. Per R. Bodin Litt historie 1960: nasA & DoD are Interested in developing a satellite based position system with.
G lobal P ositioning S ystem Vamshi Linga Clint Reitsma.
1 What is GPS?. The Global Positioning System Constellation GPS is a global navigation satellite system developed by the U.S. Department of Defense, managed.
Global Positioning System. The History of GPS Feasibility studies begun in 1960’s. Pentagon appropriates funding in First satellite launched in.
Introduction to the Global Positioning System Introduction to the Global Positioning System Pre-Work GPS for ICS
Introduction to the Global Positioning System. What is the GPS? Orbiting navigational satellites Orbiting navigational satellites Transmit position and.
Chapter 16 GPS/Satnav. GPS Global Positioning System Will eventually replace the older, radio/radar based systems of VOR, ILS and NDB. The US system is.
GPS Global Positioning System Lecture 11. What is GPS?  The Global Positioning System.  A system designed to accurately determining positions on the.
ESSC Lecture 1/14/05 1 Global Positioning System (GPS)
Geographic Information Systems
How Global Positioning Devices (GPS) work
EE587 Spring – 2003 M12 - GPS Presented by, Kishore Mogatadakala 02/04/03. 1) GPS and the satellite constellation 2)Principle - segments and operation.
1/28/2010PRRMEC What is GPS… The Global Positioning System (GPS) is a U.S. space- based global navigation satellite system. It provides reliable positioning,
Global Positioning Systems GPS
Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 3.2: Sensors Jürgen Sturm Technische Universität München.
Introduction to the Global Positioning System Introduction to the Global Positioning System Pre-Work GPS for Fire Management
Introduction to GPS.
Intro to GIS Spring  GPS = Global Positioning System  GNSS = Global Navigation Satellite Systems  Satellite based technologies that give location.
GPS How it Works For a full tutorial on GPS and its applications visit the Trimble WebsiteTrimble Website.
Global Positioning Systems Agriscience. OnStar Navigation System.
Global Positioning Systems Glen T. Huettl Agricultural Education Garrison High School.
GPS(Global Positioning System) -An Introduction. What is the GPS? Orbiting navigational satellites Transmit position and time data Handheld receivers.
Differential GPS An Introduction.
Finding Your Way— Maps, Compass and GPS Eagle Vision 2005.
Global Positioning System
West Hills College Farm of the Future. West Hills College Farm of the Future GLONASS Russia’s global satellite navigation system 24 satellites in three.
By Andrew Y.T. Kudowor, Ph.D. Lecture Presented at San Jacinto College.
BASIC CONCEPTS OF GLOBAL POSITIONING SYSTEMS (GPS) Introduction to GPS Merritt College Marc Epstein, Instructor.
Global Positioning Systems A HISTORY OF THE U.S.A. GPS.
INS: Inertial Navigation Systems An overview of 4 sensors.
What is GPS?. GPS  Global Positioning System  Network of 24 satellites (with spares)  Developed by Department of Defense  Operational 24 hours/day.
How GPS and GIS are used to Manage Natural Resources.
Inertial Navigation System Overview – Mechanization Equation
NAVSTAR GPS Mike Mickelson KD8DZ 08 Dec GPS BASICS.
Introduction To Localization Techniques (GPS)
Global Positioning Systems. Why GPS? Challenges of finding exact location by traditional methods Astronomical observation Adjustments based on gravity.
GPS Global Positioning System. What is GPS?  The Global Positioning System.  A system designed to accurately determining positions on the earth  The.
Lecture 4: Global Positioning System (GPS)
Precision Agriculture: GPS and Differential Corrections.
Global Positioning System Overview
West Hills College Farm of the Future. West Hills College Farm of the Future Precision Agriculture – Lesson 2 What is GPS? Global Positioning System Operated.
Chapter 2 GPS Crop Science 6 Fall 2004 October 22, 2004.
Differential GPS An Introduction. How does it work.
Introduction to NAVSTAR GPS Introduction to NAVSTAR GPS Charlie Leonard, 1999 (revised 2001, 2002)
Satellite Network. Satellite Network 24 satellites in orbit, plus 3 backups lbs, solar powered Orbit height is roughly 20,000 km (Earth radius.
Where am I?. Each satellite constantly sends out the current time as a message contained within radio waves Speed of light = 3X10 8 meters/second.
Yacht Navigation Support Systems Communications and Networking Systems Prof. Igor Bisio DITEN Via Opera Pia 13, 16145, Genoa Tel Fax
Introduction to the Global Positioning System Introduction to the Global Positioning System.
Revised 10/30/20061 Overview of GPS FORT 130 Forest Mapping Systems.
PRESENTATION ON GPS B ASED T RACKING S YSTEM Group Members: Amit Kumar Kunal Mani Narahttam Paul Prabhat Kumar Satyanarayan Pathak.
The Global Positioning System Rebecca C. Smyth April 17 - May 2, 2001.
A GADGET WHICH CHANGED THE WAY THE WORLD OPERATES Global Positioning System Seminar by: B V Aparna ECE CMR College of Engg. And Tech.
Younis H. Karim, AbidYahya School of Computer University Malaysia Perlis 1.
The Global Positioning System
Global Positioning System
Global Positioning Systems (GPS) for Precision Farming
Introduction To GPS.
Differential GPS An Introduction 2/4/03.
Surveying Instruments
Off-Road Equipment Management TSM 262: Spring 2016
CS378 - Mobile Computing Location and Maps.
Presentation transcript:

Navigation Systems and Their Implementation Michael Bekkala Michael Blair Michael Carpenter Matthew Guibord Abhinav Parvataneni Dr. Shanker Balasubramaniam

Background Accessibility Popularity of GPS and INS Cell phones Apple iPhone, Blackberry, Android platform Nintendo Wii Wii Remote, MotionPlus

Background: GPS First put into practical use in the 90’s. More commonly used in the 21st century GPS is for navigation, syncing computer networks time, missile guidance Some applications that make use of GPS are Garmin Car Navigation Systems, Google maps, mobile apps GPS satellites are maintained by the Air force and can be used by anybody

Global Positioning System (GPS): How it works At least 24 operational GPS satellites in orbit 12 hour orbit 11,000 miles above earth Atomic clock Most accurate time and frequency standards known Synchronized, send signals at same time

Global Positioning System (GPS): How it works cont’d. Satellites send data to earth which are picked up by a receiver Signals arrive at different times based on the distance from the satellite L1 ( MHz) Receiver needs to determine distance to four satellites Determines 3-dimensional position Does not send out a signal But how does the receiver determine its distance from each satellite?

Global Positioning System (GPS): How it works cont’d. To calculate distance: Distance = Speed Time Speed ≈ Speed of Light How to determine time? Receiver ’ s clock becomes synchronized to Coordinated Universal Time (UTC) by tracking four or more satellites Each satellite transmits a unique “ pseudo random ” code at extremely precise time intervals Receiver knows each satellite ’ s pseudo random code and when they are sent Receiver determines the time delay it takes to match the expected satellite pseudo random code with the received pseudo random code Time Delay = Time!

Global Positioning System (GPS): Sources of Error Atmospheric Error Speed of light is only a constant in a vacuum Charged Particles in the Ionosphere Water Molecules in the Troposphere Ephemeris Error Error that effects the satellite’s orbit (ephemeris) Caused by the gravitational pull of the sun, moon, and the pressure caused by solar radiation Error monitored by the Department of Defense (DoD) and broadcasted to the GPS satellites Multipath Error Timing error from signals bouncing off of objects such as buildings or mountains Can be reduced by signal rejection techniques How can we reduce errors caused by the atmosphere?

Global Positioning System (GPS): Error Correction: DGPS DGPS = Differential GPS Basic Idea: Use known locations as reference locations Exact Position is known, compare to the location determined by GPS Develop error correction data by using the difference of the exact location and the GPS determined location Broadcast error correction data to local GPS receivers (receivers within 200km of the reference station) Error correction can remove errors caused by the atmosphere—makes GPS data more accurate!

Global Positioning System (GPS): Error Correction: WAAS Wide Area Augmentation System (WAAS) WAAS is an example of DGPS Also referred to as a Satellite Based Augmentation System (SBAS) Developed by the Federal Aviation Administration (FAA) Uses a network of ground based stations in North America and Hawaii Measures variations in satellite signals Relays error to geostationary WAAS satellites Used to improve accuracy and integrity of data Independent systems being developed in Europe (Galileo), Asia, and India.

Global Positioning System (GPS): Applications Aerospace Automotive Military Civilian Recreation Augmented Reality The list goes on

Global Positioning System (GPS): NMEA National Marine Electronics Association 0183 (NMEA) A standard which defines communication between marine electronic devices Uses ASCII serial communication Can be read by the microcontroller over UART and parsed appropriately Defines message content

Global Positioning System (GPS): NMEA Cont’d. Requirements Contain complete position, velocity, and time (PVT) data Independent of other messages Begin with a ‘$’, end with a ‘\n’ Content separated by commas No longer than 80 characters

Global Positioning System (GPS): NMEA Cont’d. $GPGGA,123519, ,N, ,E,1,08,0.9,545.4,M,46.9,M,,*47 GGA - essential fix data which provide 3D location and accuracy data GGA Global Positioning System Fix Data Fix taken at 12:35:19 UTC ,N Latitude 48 deg ' N ,E Longitude 11 deg ' E 1 Fix quality: GPS fix (SPS) 08 Number of satellites being tracked 0.9 Horizontal dilution of position 545.4,M Altitude, Meters, above mean sea level 46.9,M Height of geoid (mean sea level) above WGS84 ellipsoid (empty field) Time in seconds since last DGPS update (empty field) DGPS station ID number *47 Checksum data, always begins with *

Inertial Navigation System The use of inertial measurements in navigation Measurements come from inertial sensors such as: Accelerometers Gyroscopes Very accurate over short term Errors integrate with time

Physics of Accelerometers/Gyroscopes Accelerometers Accelerometers Measure acceleration in x, y, z directionsMeasure acceleration in x, y, z directions Types:Types: Mechanical Mechanical Micro Electromechanical (MEMS) Micro Electromechanical (MEMS) CapacitiveCapacitive PiezoelectricPiezoelectric

Mechanical Accelerometers Mass suspended in a case by a pair of springs Mass suspended in a case by a pair of springs Acceleration along the axis of the springs displaces the mass. Acceleration along the axis of the springs displaces the mass. This displacement is proportional to the applied acceleration This displacement is proportional to the applied acceleration Picture from “Basic Inertial Navigation” by Sherryl Stoval

Capacitive Accelerometers Sense a change in capacitance with respect to acceleration Sense a change in capacitance with respect to acceleration Diaphragm acts as a mass that undergoes flexure Diaphragm acts as a mass that undergoes flexure Two fixed plates sandwich diaphragm, creating two capacitors Two fixed plates sandwich diaphragm, creating two capacitors Change in capacitance Change in capacitance by altering distance between by altering distance between two plates Most common form Most common form e011.html

Piezoelectric Accelerometers Force exerted by acceleration Force exerted by acceleration changes voltage generated by material changes voltage generated by material Low output signal and high Low output signal and high output impedance requires the use of amplifiers Commonly uses 1 crystal Commonly uses 1 crystal made of quartz Picture from Wikipedia.org

Physics of Accelerometers/Gyroscopes Gyroscopes Gyroscopes Measure Angular velocity in yaw, pitch, and roll directionsMeasure Angular velocity in yaw, pitch, and roll directions Mechanical Mechanical Micro Electromechanical (MEMS) Micro Electromechanical (MEMS) Optical Optical

Mechanical Gyroscopes Spinning wheel on 2 gimbals When subject to rotation, wheel remains constant and angles adjacent to gimbals change. Measures angular position Picture from

Micro Electromechanical Gyroscopes Coriolis effect Vibrating elements measure Coriolis effect (vibrations on sense axis) Measures angular velocity Low part count Picture from “An introduction to inertial navigation” by Oliver Woodman

Optical Gyroscopes  Sends out two beams of light  Sensor can detect interference in the light beam  Very accurate  No inherent drift Picture from 8/09/fiber-optic-gyroscopes.html

Inertial Navigation System Diagram from Basic Inertial Navigation by Sherryl Stovall System View of INS Equations

Navigation Equations The navigation equations can be represented as (Shin, 2001):

Navigation Equations Body  NED

Navigation Equations GPS and INS need to be in the same reference frame for proper measurements. GPS data is in Earth Centered Earth Fixed (ECEF) INS data is in Body frame and has to be translated to the North-East-Down frame Body  NED, ECEF  NED Picture from “Accuracy and Improvement of Low Cost INS/GPS for Land Applications” by Shin

Integration of GPS and INS Different integration levels: Loosely Coupled Corrects errors in the IMU and INS Does not correct GPS Tightly Coupled Corrects both INS and GPS errors Kalman filtering integrates both systems to achieve a more accurate overall system

GPS/INS Integration Diagram from df System View of Integration

Questions ?