Prof. D.C. Richardson Sections

Slides:



Advertisements
Similar presentations
Universe Eighth Edition Universe Roger A. Freedman William J. Kaufmann III CHAPTER 3 Eclipses and the Motion of the Moon CHAPTER 3 Eclipses and the Motion.
Advertisements

Observations of the Sky.  What patterns, motions, and events do we notice in the sky?  What theories can we create to explain them?  How can these.
Chapter 2: Discovering the Universe for Yourself
Chapter 2 Discovering the Universe for Yourself
Observing the Universe for Yourself
The Sun-Earth-Moon System
Chapter 2 Discovering the Universe for Yourself
Celestial Sphere Stars seem to be on the inner surface of a sphere surrounding the Earth.
Observing and the Sky Astronomy 311 Professor Lee Carkner Lecture 3.
Summer, Winter, and the Tropics The Sun will be overhead on the Tropic of Cancer on the summer solstice (Northern Hemisphere), and overhead at the Equator.
Chapter 0 Charting the Heavens
Announcements First Homework Assignment.
The night sky? With the naked eye, we can see more than 2000 stars as well as the Milky Way. Remind students that we often use the term “constellation”
From the previous class…
Astronomy 104 Lunar Phases AndEclipses January 24, 2007.
August 29, 2011: 10am Class On-line Quiz #1 on d2l: Please complete before class on Friday, Sept. 2 HW 2 on line (d2l and boojum): Create a Constellation.
Observing and the Sky Astronomy 311 Professor Lee Carkner Lecture 3.
Question 1 Constellations appear to move across the sky at night because 1) the Earth orbits the Sun. 2) the Moon orbits the Earth. 3) stars are in constant.
Chapter 2: Discovering the Universe for Yourself
The Moon, Our Constant Companion
Chapter 1 Cycles of the Sky
The Earth, The Sun, and The Moon
Week 2 Earthly Phenomena: Seasons Lunar Phases Solar and Lunar Eclipses Tides Reading: E2, E3, 5.2 (12 pages)
Discovering The Universe for Yourself
Chapter 2 Discovering the Universe for Yourself
Copyright © 2009 Pearson Education, Inc. Chapter 2 Discovering the Universe for Yourself.
Discovering the Universe for Yourself
Constellations A constellation is a region of the sky.
Chapter 1: The Cycles of the Sky
2.1 Patterns in the Night Sky
Constellations.
CHAPTER 1: Discovering the Night Sky.
Introduction to Astronomy.  Observations lead to theories and laws  Laws are concise statements that summaries a large number of observations.  Theories.
Chapter 2 Discovering the Universe for Yourself
The Celestial Sphere Stars at different distances all appear to lie on the celestial sphere. The 88 official constellations cover the celestial sphere.
Seasons, Phases of the Moon and Eclipses Chapter 2.2 & 2.3.
Equinoxes and Solstices When the ecliptic and celestial equator intersect, day and night are each 12 hours long: the equinox. When the Sun reaches its.
The Reason for the Seasons
Motions of the Earth Our goals for learning: What are the main motions of the Earth in space? How do we see these motions on the ground? How does it affect.
Tegrity Tegrity has been having issues the past few days. Service may be intermittent. Tegrity has been having issues the past few days. Service may be.
The Earth, Sun, and Moon.
1. annular eclipse - the moon is not close enough to the earth to completely block the sun, so the sun rings the moon.
© 2010 Pearson Education, Inc. Discovering the Universe for Yourself.
Last time: 2.1. Patterns in The Sky: Stars and constellations, TODAY: celestial coordinates 2.2 Seasons,…Precession 2.2 (cont.) The Moon and Eclipses.
Chapter 1 Predicting the Motions of the Stars, Sun, and Moon.
Chapter 2 Discovering the Universe for Yourself. What does the universe look like from Earth? With the naked eye, we can see more than 2,000 stars as.
© 2005 Pearson Education Inc., publishing as Addison-Wesley Chapter 2 Discovering the Universe for Yourself Mark Twain (1835 – 1910) American author, from.
© 2010 Pearson Education, Inc. The sky varies as Earth orbits the Sun As the Earth orbits the Sun, the Sun appears to move eastward along the ecliptic.
© 2010 Pearson Education, Inc. Chapter 2 Discovering the Universe for Yourself.
Astronomy Picture of the Day
Mastering Astronomy.
1 Lines in the Sky In order to use the sky to measure time you need to measure the location of objects in the sky. We will look at two methods of measuring.
Revolution/Rotation Day/Night Phases of the Moon Seasons.
Quiz #1 Review Thursday, 15 September 2011 I list here the main topics and the main points for each topic. Study also the indicated lecture notes.
Copyright © 2015, W. W. Norton & Company Prepared by Lisa M. Will, San Diego City College Lecture Slides CHAPTER 2: Patterns in the Sky—Motions of Earth.
2.2 The Reason for Seasons Our goals for learning:
The Daily Motion As the Earth rotates, the sky appears to us to rotate in the opposite direction. The sky appears to rotate around the N (or S) celestial.
PSCI 1414 GENERAL ASTRONOMY LECTURE 6: THE REASON FOR SEASONS ALEXANDER C. SPAHN.
© 2010 Pearson Education, Inc. Chapter 2 Discovering the Universe for Yourself.
© 2010 Pearson Education, Inc. Chapter 2 Discovering the Universe for Yourself.
Astronomy vs. Astrology Astronomy: Astronomy: The scientific study of matter in outer space, especially the positions, dimensions, distribution, motion,
Motion of the Moon. Review Question Describe the path the Sun will take across the sky on the day of the autumnal equinox as viewed from the Earth’s equator.
Chapter 2 Discovering the Universe for Yourself. 2.1 Patterns in the Night Sky What does the universe look like from Earth? Why do stars rise and set?
Astronomy Chapter 1 Charting the Universe. Obj.#1 What is Astronomy? Astronomy is the study of the Universe The universe is the total of all space, time,
Research Experiences for Undergraduates (REU)
Homework #2 degrees is how many degrees, arcminutes, and arcseconds?
The Sun’s Motion and The Four Seasons
The Sun-Earth-Moon System
The Sun-Earth-Moon System
Presentation transcript:

Prof. D.C. Richardson Sections 0101-0106 ASTR100 (Spring 2006) Introduction to Astronomy Discovering the Universe Order E2-41 TRANSPARENT CELESTIAL GLOBE D4-25 GYROSCOPE - TOY E2-34 BASIC PLANETARIUM E2-21 PHASES OF THE MOON E2-23 UMBRA AND PENUMBRA - EXTENDED SOURCE Prof. D.C. Richardson Sections 0101-0106

Celestial Sphere Zenith: Point directly overhead Horizon: Where the sky meets the ground SKIPPED THIS 1/31/08

Celestial Sphere North Celestial Pole: Point on celestial sphere above North Pole Celestial Equator: Line on celestial sphere above Equator SKIPPED THIS 1/31/08

What is the arrow pointing to. A. the zenith B What is the arrow pointing to? A. the zenith B. the north celestial pole C. the celestial equator This question will check whether students understand the pattern they see in this time exposure photograph.

What is the arrow pointing to. A. the zenith B What is the arrow pointing to? A. the zenith B. the north celestial pole C. the celestial equator This question will check whether students understand the pattern they see in this time exposure photograph.

Review: Coordinates on the Earth Latitude: position north or south of equator Longitude: position east or west of prime meridian (runs through Greenwich, England) Use this for a brief review of latitude and longitude; it’s also useful to bring in a real globe to class for this purpose. The photo at right is the entrance to the Old Royal Greenwich Observatory (near London); the line emerging from the door marks the Prime Meridian.

Altitude of the celestial pole = your latitude Show students how to locate the NCP and SCP, and how the sky moves around them. (You might wish to repeat the time exposure photo of the sky at this point to re-emphasize what we see.) Can also ask students where they’d find the north celestial pole in their sky tonight…

You are at the North Pole. You are at latitude 50°N. The North Star (Polaris) is 50° above your horizon, due north. Where are you? You are on the equator. You are at the North Pole. You are at latitude 50°N. You are at longitude 50°E. This question just makes sure they understand the altitude = latitude idea…

You are at the North Pole. You are at latitude 50°N. The North Star (Polaris) is 50° above your horizon, due north. Where are you? You are on the equator. You are at the North Pole. You are at latitude 50°N. You are at longitude 50°E. This question just makes sure they understand the altitude = latitude idea…

The sky varies as Earth orbits the Sun As the Earth orbits the Sun, the Sun appears to move eastward along the ecliptic. Use this interactive figure to explain how the constellations change with the time of year.

Why do the constellations we see depend on latitude and time of year? They depend on latitude because your position on Earth determines which constellations remain below the horizon. They depend on time of year because Earth’s orbit changes the apparent location of the Sun among the stars.

The Seasons TRUE OR FALSE? Earth is closer to the Sun in summer and farther from the Sun in winter. A good way to begin discussion of seasons is by posing this question about the most common season misconception.

Hint: When it is summer in the U.S., it is winter in Australia. TRUE OR FALSE? Earth is closer to the Sun in summer and farther from the Sun in winter. Hint: When it is summer in the U.S., it is winter in Australia. This hint should make students realize that distance from the Sun CANNOT be the explanation for seasons: if it were, the entire Earth should experience the same seasons at the same time. Note: Some students think the axis tilt makes one hemisphere closer to the Sun than the other; you can show them why this is not the case by revisiting the 1-to-10 billion scale model solar system from Ch. 1. When you remind them that the ball point size Earth orbits 15 meters from the grapefruit size Sun, it’s immediately obvious that the 2 hemispheres cannot have any significant difference in distance.

The real reason for seasons involves Earth’s axis tilt. TRUE OR FALSE! Earth is closer to the Sun in summer and farther from the Sun in winter. • Seasons are opposite in the N and S hemispheres, so distance cannot be the reason. The real reason for seasons involves Earth’s axis tilt. Now that you’ve answered the T/F question, we can go on to explore the real reason for seasons. Note: You might optionally mention that, in fact, Earth is closest to the Sun during N. hemisphere winter…

What Causes the Seasons? Misconceptions about the cause of the seasons are so common that you may wish to go over the idea in more than one way. We therefore include several slides on this topic. This slide uses the interactive version of the figure that appears in the book; the following slides use frames from the Seasons tutorial on the Astronomy Place web site. Seasons depend on how Earth’s axis affects directness of sunlight.

Axis tilt changes directness of sunlight during the year. This tool is taken from the Seasons tutorial on the Astronomy Place web site. You can use it to reinforce the ideas from the previous slide. As usual, please encourage your students to try the tutorial for themselves.

Summary: The Real Reason for Seasons Orientation of Earth’s axis relative to the Sun changes as Earth orbits Sun. Summer occurs in your hemisphere when sunlight hits it more directly; winter occurs when the sunlight is less direct. Spring and fall are in between. AXIS TILT is the key to the seasons; without it, we would not have seasons on Earth!

Why doesn’t distance matter? Earth’s orbit nearly circular anyway. Note: more ocean, less land means less extreme seasons in the southern hemisphere. Note: Some planets have greater distance variation that DOES affect their seasons, e.g., Mars, Pluto. The two notes should be considered optional. If you cover the first note, you might point out that since Earth is closer to the Sun in S. hemisphere summer and farther in S. hemisphere winter, we might expect that the S. hemisphere would have the more extreme seasons, but it does not because the distance effect is overwhelmed by the geographical effect due to the distribution of oceans.

How do we mark the progression of the seasons? We define four special points: summer solstice winter solstice spring (vernal) equinox fall (autumnal) equinox Here we focus in on just part of Figure 2.13 to see the four special points in Earth’s orbit, which also correspond to moments in time when Earth is at these points.

We can recognize solstices and equinoxes by Sun’s path across sky: Summer solstice: highest path, rise and set at most extreme north of due east. Winter solstice: lowest path, rise and set at most extreme south of due east. Equinoxes: Sun rises precisely due east and sets precisely due west. Of course, the notes here are true for a N. hemisphere sky. You might ask students which part written above changes for S. hemisphere. (Answer: highest and lowest reverse above, but all the rest is still the same for the S. hemisphere; and remind students that we use names for the N. hemisphere, so that S. hemisphere summer actually begins on the winter solstice…)

Seasonal changes are more extreme at high latitudes Other points worth mentioning: Length of daylight/darkness becomes more extreme at higher latitudes. The four seasons are characteristic of temperate latitudes; tropics typically have rainy and dry seasons (rainy seasons when Sun is higher in sky). Equator has highest Sun on the equinoxes. Optional: explain Tropics and Arctic/Antarctic Circles. Path of the Sun on the summer solstice at the Arctic Circle

Does the orientation of Earth’s axis change with time? Although the axis seems fixed on human time scales, it actually precesses over about 26,000 years. Polaris won’t always be the North Star! Positions of equinoxes/solstices move. Earth’s axis precesses like the axis of a spinning top. Precession can be demonstrated in class in a variety of ways. E.g., bring a top or gyroscope to class, or do the standard physics demonstration with a bicycle wheel and rotating platform. You may wish to go further with precession of the equinoxes, as in the Common Misconceptions box on “Sun Signs” on p. 37 --- this always surprises students, and helps them begin to see why astrology is questionable (to say the least!). Can also mention how Tropics of Cancer/Capricorn got their names from constellations of the solstices, even though the summer/winter solstices are now in Gemini/Sagittarius.

Phases of the Moon

Why do we see phases of the Moon? Half the Moon illuminated by Sun and half dark. We see some combination of the bright and dark faces. You may want to do an in-class demonstration of phases by darkening the room, using a lamp to represent the Sun, and giving each student a Styrofoam ball to represent the Moon. If you lamp is bright enough, the students can remain in their seats and watch the phases as they move the ball around their heads.

Phases of the Moon You can use this tool from the Phases of the Moon tutorial to present the idea behind phases in another way. As usual, please encourage your students to try the tutorial for themselves.

Moon Rise/Set by Phase SKIPPED 2/5/08. Use this tool from the Phases of the Moon tutorial to explain rise and set times for the Moon at various phases. As usual, please encourage your students to try the tutorial for themselves.

} } Phases of the Moon: 29.5-day cycle waxing waning new crescent first quarter gibbous full last quarter } waxing Moon visible in afternoon/evening. Gets “fuller” and rises later each day. } waning Moon visible in late night/morning. Gets “less” and sets later each day.

It’s 9 am. You look up in the sky and see a moon with half its face bright and half dark. What phase is it? First quarter Waxing gibbous Third quarter Half moon This will check whether students have grasped the key ideas about rise and set times.

It’s 9 am. You look up in the sky and see a moon with half its face bright and half dark. What phase is it? First quarter Waxing gibbous Third quarter Half moon If anyone chose “half moon,” remind them that there is no phase with that name… (and that first and third quarter refer to how far through the cycle of phases we are…)

We see only one side of the Moon Synchronous rotation: The Moon rotates exactly once with each orbit. This is why only one side is visible from Earth. ™

What causes eclipses? The Earth and Moon cast shadows. When either passes through the other’s shadow, we have an eclipse. This slide starts our discussion of eclipses. Use the figure to explain the umbra/penumbra shadows.

When can eclipses occur? Lunar eclipses can occur only at full moon. Lunar eclipses can be penumbral, partial, or total. Use the interactive figure to show the conditions for the 3 types of lunar eclipse.

When can eclipses occur? Solar eclipses can occur only at new moon. Solar eclipses can be partial, total, or annular. Use the interactive figure to show the conditions for the 3 types of solar eclipse.

Why don’t we have an eclipse at every new and full moon? The Moon’s orbit is tilted 5° to ecliptic plane… So we have about two eclipse seasons each year, with a lunar eclipse at full moon and solar eclipse at new moon. Use this pond analogy to explain what we mean by nodes and how we get 2 eclipse seasons each year (roughly). Note: You may wish to demonstrate the Moon’s orbit and eclipse conditions as follows. Keep a model “Sun” on a table in the center of the lecture area; have your left fist represent the Earth, and hold a ball in the other hand to represent the Moon. Then you can show how the Moon orbits your “fist” at an inclination to the ecliptic plane, explaining the meaning of the nodes. You can also show eclipse seasons by “doing” the Moon’s orbit (with fixed nodes) as you walk around your model Sun: the students will see that eclipses are possible only during two periods each year. If you then add in precession of the nodes, students can see why eclipse seasons occur slightly more often than every 6 months.

Another look… This interactive tool goes through the basic cause of eclipses. Use it instead of or in addition to the earlier slides on eclipses.

Summary: Two conditions must be met to have an eclipse… It must be full moon (for a lunar eclipse) or new moon (for a solar eclipse). The Moon must be at or near one of the two points in its orbit where it crosses the ecliptic plane (its nodes). AND

Predicting Eclipses Eclipses recur with the 18 yr, 11 1/3 day saros cycle, but type (e.g., partial, total) and location may vary. Complications caused by precession of nodes. Point out that even though some ancient civilizations recognized the saros cycle, precise prediction still eluded them. Use the colored bands in the figure to illustrate the saros cycle (e.g., red bands for 2009 and 2027 eclipses are 18 yr, 11 1/3 days apart).

Ended After a Few More Slides (history of astro) Feb 5/08 (see class04)