Adaptation vs Plasticity. The Problem: People often wish to jump to the conclusion that a trait change they see is the result of adaptation However, that.

Slides:



Advertisements
Similar presentations
EVOLUTION OF POPULATIONS
Advertisements

Chapter 17 Evolution of Populations
Population Genetics and Natural Selection
Heredity Overview How are genetic characteristics passed on from one generation to the next?
Evolution by Natural Selection
Discovery of a rare arboreal forest-dwelling flying reptile (Pterosauria, Pterodactyloidea) from China Wang et al. PNAS Feb. 11, 2008.
The Inheritance of Complex Traits
Chapter 11 Review Section Assessments.
Lecture Topic: Natural Selection as the mechanism of adaptive evolution: Importance: Natural Selection = differential survival and reproduction. Adaptation.
Quantitative Genetics
Genetic variation, detection, concepts, sources, and forces
 Read Chapter 6 of text  We saw in chapter 5 that a cross between two individuals heterozygous for a dominant allele produces a 3:1 ratio of individuals.
Evolution of Populations
The Hardy-Weinberg Equilibrium
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display Chapter 12 Lecture Outline See PowerPoint Image Slides.
David Sadava H. Craig Heller Gordon H. Orians William K. Purves David M. Hillis Biologia.blu B – Le basi molecolari della vita e dell’evoluzione.
The plant of the day Welwitschia is a monotypic gymnosperm genus
Evolution Test Review Session!!
Part 2 Evolution Notes. Natural Selection and Macroevolution Natural Selection shapes a population, making it adapted to its current environment. This.
The Evolution of Populations Chapter 23 Biology – Campbell Reece.
Chapter 20 Genes Within Populations
Chapter 5 Characterizing Genetic Diversity: Quantitative Variation Quantitative (metric or polygenic) characters of Most concern to conservation biology.
Quantitative Genetics
Lesson Overview 17.1 Genes and Variation.
1 Phenotypic Variation Variation of a trait can be separated into genetic and environmental components Genotypic variance  g 2 = variation in phenotype.
Rules of Inheritance The rules of inheritance were unknown when Darwin developed the theory of natural selection The ‘hip’ idea at the time was the ‘blending.
17.1 Genes and Variation.
Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Chapter 23 The Evolution of Populations.
Trait evolution Up until now, we focused on microevolution – the forces that change allele and genotype frequencies in a population This portion of the.
Discovery of a rare arboreal forest-dwelling flying reptile (Pterosauria, Pterodactyloidea) from China Wang et al. PNAS Feb. 11, 2008.
16.2 Evolution as Genetic change Biology Mr. Hines.
Remainder of Chapter 23 Read the remaining materials; they address information specific to understanding evolution (e.g., variation and nature of changes)
 Evolution is the change in the inherited traits of a population of organisms through successive generations  Two factors at work:  Processes that.
Introduction to Physiological Principles
The Spandrels of San Marco Adaptation or Drift?. Gould and Lewontin (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the.
Midterm 1 Results Frequency Mean = 80 Standard Deviation = 12
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece.
Adaptation What is Adaptation? Not Phenotypic Plasticity Not Genetic Drift Must be targets of selection (not Pleiotropy, not linkage)
IP5: Hardy-Weinberg/Genetic Drift/Gene Flow EK1A1: Natural Selection is a major mechanisms of natural selection EK1A3: Evolutionary change is also driven.
IV. Variation in Quantitative Traits A. Quantitative Effects.
Population Genetics Chapter 16 & 17.
UV-Resistance Can Evolve by Natural Selection The postulates are satisfied: –Postulate 1: Daphnia from different ponds differ in their tolerance of UVR.
Lesson Overview 17.1 Genes and Variation Darwin developed his theory of evolution without knowing how heritable traits passed from one generation to the.
IP5: Hardy-Weinberg/Genetic Drift/Gene Flow EK1A1: Natural Selection is a major mechanisms of natural selection EK1A3: Evolutionary change is also driven.
Chapter 5 Adaptation & Natural Selection What causes variation within a species or population? Why are organisms adapted to their specific environments?
Evolution of Populations. Individual organisms do not evolve. This is a misconception. While natural selection acts on individuals, evolution is only.
Evolution of Populations
MULTIPLE GENES AND QUANTITATIVE TRAITS
Constraints on Natural Selection
Quantitative Variation
Lesson Overview 17.1 Genes and Variation.
Lesson Overview 17.1 Genes and Variation.
Chapter 17: Evolution of Populations
Conclusions of Hardy-Weinberg Law
MULTIPLE GENES AND QUANTITATIVE TRAITS
The Evolution of Populations
Alternative hypotheses (i. e
Introduction to Evolution
The Mechanisms of Evolution
Lesson Overview 17.1 Genes and Variation.
The Evolution of Populations
Patterns of Selection.
The Evolution-Ecology Connection
Chapter 7 Beyond alleles: Quantitative Genetics
Modes of selection.
9.6 Evolution as Genetic Change in Populations
Lesson Overview 17.1 Genes and Variation.
Mechanisms of Evolution Microevolution
DO NOW Wednesday March 26th, 2019 STANDARD.
Population Genetics: The Hardy-Weinberg Law
Presentation transcript:

Adaptation vs Plasticity

The Problem: People often wish to jump to the conclusion that a trait change they see is the result of adaptation However, that is not always the case. There are other mechanisms that could cause phenotypic variation This is what Stephen Jay Gould called the “Adaptationist Paradigm”

Adaptations are ubiquitous, but demonstrating that a particular trait is an adaptation is not always easy The Problem:

Critique of the “Adaptationist Programme” Gould & Lewontin The Spandrels of San Marco and the Panglossian Paradigm: A Critique of the Adaptationist Programme. One of the most important papers in Evolutionary Biology They critique the “Adaptationist” and “Panglossian Programme” that assumes that a phenotypic change is the result of adaptation Gould & Lewontin point out tha t not all phenotypic variation or phenotypic evolution is the result of adaptation

Gould & Lewontin: The spandrels of San Marco San Marco Cathedral, Venice

Gould & Lewontin on Physical Constraint: The spandrels of San Marco might not have been created for a reason, but might simply be a by product due to the creation of arches San Marco Cathedral, Venice

Physical Constraint Developmental constraint Constraint in Body Plan If body size increases, brain size has to increase If a larger eye evolves, need a bigger socket (the socket itself is not the target of selection) Analogy: the Spandrels of San Marco

Gould & Lewontin Other potential causes of phenotypic variation that is NOT Adaptation: (A) Plasticity: phenotypic change without evolution (B) Nonadaptive Evolutionary Forces: Genetic Drift Genetic Constraint (Linkage, Pleiotropy) (C) Physical Constraint (allometry, Mechanical compensation)

Not All Phenotypic Variation is due to Adaptation Phenotypic change and variation could have other causes: – Changes that are not due to genetic changes, but due to changes in gene expression: Phenotypic Plasticity – Changes that are Genetic, but NOT adaptive: Genetic Drift: random chance Linkage and Genetic Hitchhiking: Genetic changes that occur because the gene was right next to another gene on a chromosome that was under selection Constraint: physical or structural (like the Spandrels)

Requires Natural Selection Requires polymorphism in a population MUST have an effect on Fitness Is a frequency (%) change in a population There must be a Selective Force Adaptation

How can you tell if a trait evolved as a result of adaptation? (1) The trait must be heritable (2) The differences between populations are genetically based differences rather than inducible differences (plasticity) (3) The trait has fitness consequences (promotes survival, performance, and number of offspring) (If a trait evolved due to genetic drift, linkage or pleiotropy, the change is genetic, but may confer no fitness advantage)

Measuring Heritable Variation Quantitative traits are controlled by many loci, many of which with small effects. For quantitative traits, we depict the sources of variation as follows: Phenotypic variation is a result of variation that is due to genetic effects (V G ), variation due to environmental factors (V E ) and their interaction. V P = V G + V E + V GxE So, some of the variation could be due to genetic causes, but some might be induced by the environment (as a result of gene expression).

Conceptual Confusions Trait variation is often assumed to be due to Adaptation, when the differences might be due to Phenotypic Plasticity or nonadaptive genetic causes

Phenotypic Plasticity Differences in phenotype that a genotype exhibits across a range of environments Some traits with a plastic component: intelligence, height, temperature tolerance, salinity tolerance, muscle mass… Definition:

Acclimation (≠ Adaptation) 1) Result of Phenotypic Plasticity 2) Not heritable 3) Short term or developmental response within a single generation 4) Arises through differential gene expression or other regulatory mechanism rather than natural selection

Nature vs Nurture Both environment and genetics affect many traits, but need to experimentally or statistically separate these factors How? Example: Common-garden experiment Having appropriate controls Statistically assessing the effect of environment

This is a general problem This type of problem is a factor in all studies that attempt to associate a gene with a trait You need to account for the effects of environment For example, problems arise when different labs attempt to associate a gene with a disease using laboratory mice that have been reared under different conditions

Types of Plasticity Short-term reversible Development acclimation: generally irreversible Genotype --> Development --> Phenotype Within normal tolerance range In response to Stress

Plasticity can be depicted graphically as a Reaction Norm Response Environment Reaction Norm : the function which describes the plastic response

In the case of plasticity, the different phenotypes in different environments are NOT the result of Adaptation… The Genotype(s) in the environments are NOT changing The differences between them are due to differences in response (such as gene expression) in different environments Response Environment

Dodson, SI Predator induced reaction norms. BioScience 39:447–452

Hebert and Grewe, 1985 Predator induced formation of helmets in Daphnia

Genotype x Environment Interaction Changes in rank or level of performance among genotypes when tested in different environments Reveals genetic variation for plasticity Could reflect tradeoffs between fitness of different genotypes in different environments

When lines cross, the implication is that different environments will select for different phenotypes Response Environment Trade-offs in different environments

Size Temperature Could get selection for different reaction norms (different plasticity) in different environments cold hot big small Select for this reaction norm in hot environments Select for this reaction norm in cold environments

Genetic variation for plasticity can be determined by examining the significance of the interaction term from an Analysis of Variance (ANOVA) Response No Genetic Variation for Plasticity Genetic Variation for Plasticity Environment

Most Importantly, Must distinguish plasticity from adaptations to understand heritable (and permanent) vs inducible differences, in order to interpret experiments properly Many experiments fail to do this Examples: drug response, hormone replacement therapy

How to distinguish between genetically based traits vs. phenotypic plasticity? Animal Model Analyses: Determine how much of a trait is due to additive, dominance, genetic variance etc (quantitative genetic methods) – not cover here Common-garden experiment: rear different populations in a common environment to remove the effects of environmental plasticity, and determine how much variation is remaining (and due to genetic effects). Look at selection response in nature (R= h 2 S, breeder’s equation) Selection Experiments (Experimental Evolution): Impose selection on a population, then examine evolutionary shift Molecular Genetic Approaches: transgenic or gene knockout studies, to determine the impacts of particular genes

What is a common-garden Experiment? An Experiment in which individuals from different populations or species are reared under identical conditions (can be over a range of conditions) Remove differences due to environmental plasticity

Different Populations A saltwater population and a freshwater population of a small crustacean (copepod) show differences in salinity tolerance. Are the differences due to simply being reared at different salinities, or are the differences due to genetically based differences? Example:

Different Populations Rear under common conditions To determine the differences when the environment is held constant Common Garden Experiment

Different Populations If the populations still differ under common-garden conditions, the differences are genetically based. But are these genetic differences the result of adaptation? (or some other genetic cause) Common Garden Experiment

Laboratory Selection Experiments But is salinity really the factor causing the evolutionary physiological change? Perform selection experiments to test whether the evolutionary change happens in response to salinity alone.

Selection in the Lab Selection for several generations Control Take the saline population and then imposed selection for freshwater tolerance Compare the populations before and after selection Do the selection lines show the same evolutionary shift to fresh water as the wild population? Common garden experiment at the end of the selection 0515 ancestorfreshwater selected lines saline ancestors 555 acclimate at same salinity

How do we detect Evolutionary Adaptations? Transgenic and gene knockout studies Is that gene causing the trait, and does it have fitness consequences? Generally use model systems, such as mice, fruit flies, etc.

Example: Human IQ Data Data: Many studies use survey data on human populations in the US (not a common-garden experiment, where environment is held constant) Did not statistically account for differences in environment A correlation is associative, and not necessarily causative

Problems with data and statistical analysis: Several reanalyses have found that socio-economic status (and historical factors) was a stronger determinant of IQ scores than race. Socio-economic status could reflect nutrition, access to education, etc.

Impact of environment must be accounted for: There is an IQ gap between blacks and whites in America, Japanese and Koreans in Japan, Ashkenazi and Sephardic Jews in Israel, and Protestants and Catholics in Northern Ireland. As economic conditions improve for the subordinated groups, the gaps are reduced A common-garden experiment has never been performed on humans with respect to IQ scores to determine actual genetic differences with environmental effects removed Do not know of any study that has effectively controlled for socio-economic differences

Examples: Adaptation or not? A plant grows taller to obtain more sunlight Weeds in cornfields (corn is tall) are on average taller than weeds of the same species in soybean fields in order to obtain more sunlight

Examples: Adaptation or not? A plant grows taller to obtain more sunlight Plasticity Weeds in cornfields (corn is tall) are on average taller than weeds of the same species in soybean fields in order to obtain more sunlight Not enough information

Weeds in a cornfield have been found to grow taller than those in soybean fields when both populations are reared in common-garden conditions Taller weeds in the cornfields survive and a greater rate and leave more offspring Examples: Adaptation or not?

Weeds in a cornfield have been found to grow taller than those in soybean fields when both populations are reared in common-garden conditions They are genetically different, but not know for sure if it is adaptation (could be linkage, genetic drift) Taller weeds in the cornfields survive and a greater rate and leave more offspring Adaptation Examples: Adaptation or not?