Radiation Physics | ELBE | SRF Photo Injector for Electron- Laser Interaction LA 3 NET conference: Laser applications at accelerators, Mallorca,

Slides:



Advertisements
Similar presentations
Nominal and no CSR (R 56-1 = 55 mm, R 56-2 = 59 mm, R 56-3 = 0) L1 phase = 21 deg, V 3.9 = 55 MV CSR OFF BC3 OFF Elegant Tracking  z1 = mm (post.
Advertisements

A Capture Section Design for the CLIC Positron Source A. VIVOLI* Thanks to: L. RINOLFI (CERN) R. CHEHAB (IPNL & LAL / IN2P3-CNRS) O. DADOUN, P. LEPERCQ,
J. Rudolph, Helmholtz-Zentrum Berlin EuCARD 2nd ANNUAL MEETING Slice emittance measurements at the ELBE superconducting RF photoinjector.
Tessa Charles Australian Synchrotron / Monash University 1 Bunch Compression Schemes for X-band FELs.
1 Bates XFEL Linac and Bunch Compressor Dynamics 1. Linac Layout and General Beam Parameter 2. Bunch Compressor –System Details (RF, Magnet Chicane) –Linear.
Chris Tennant Jefferson Laboratory March 15, 2013 “Workshop to Explore Physics Opportunities with Intense, Polarized Electron Beams up to 300 MeV”
Bunch compressor design for eRHIC Yichao Jing and Vladimir Litvinenko FLS2012, Newport News, VA 3/8/2012.
Generation and Characterization of Magnetized Bunched Electron Beam from DC Photogun for MEIC Cooler Laboratory Directed Research and Development (LDRD)
Linac e+ source for ILC, CLIC, SuperB, … Vitaly Yakimenko, Igor Pogorelsky November 17, 2008 BNL.
TTF2 Start-to-End Simulations Jean-Paul Carneiro DESY Hamburg TESLA COLLABORATION MEETING DESY Zeuthen, 22 Jan 2004.
ASTRA Injector Setup 2012 Julian McKenzie 17/02/2012.
Collective Effects in the Driver of the Wisconsin Free-Electron Laser (WiFEL) Robert Bosch, Kevin Kleman and the WiFEL team Synchrotron Radiation Center.
Recent Experiments at PITZ ICFA Future Light Sources Sub-Panel Mini Workshop on Start-to-End Simulations of X-RAY FELs August 18-22, 2003 at DESY-Zeuthen,
Two Longitudinal Space Charge Amplifiers and a Poisson Solver for Periodic Micro Structures Longitudinal Space Charge Amplifier 1: Longitudinal Space Charge.
Simulation of Microbunching Instability in LCLS with Laser-Heater Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory.
Beam Dynamics and FEL Simulations for FLASH Igor Zagorodnov and Martin Dohlus Beam Dynamics Meeting, DESY.
A bunch compressor design and several X-band FELs Yipeng Sun, ARD/SLAC , LCLS-II meeting.
Accelerator Science and Technology Centre Extended ALICE Injector J.W. McKenzie, B.D. Muratori, Y.M. Saveliev STFC Daresbury Laboratory,
Y. Roblin, D. Douglas, F. Hannon, A. Hofler, G. Krafft, C. Tennant EXPERIMENTAL STUDIES OF OPTICS SCHEMES AT CEBAF FOR SUPPRESSION OF COHERENT SYNCHROTRON.
LDRD: Magnetized Source JLEIC Meeting November 20, 2015 Riad Suleiman and Matt Poelker.
XFEL Beam Dynamics Meeting Bolko Beutner, DESY Velocity Bunching Studies at FLASH Bolko Beutner, DESY XFEL Beam Dynamics Meeting
Electron Sources for ERLs – Requirements and First Ideas Andrew Burrill FLS 2012 “The workshop is intended to discuss technologies appropriate for a next.
Christopher Gerth DL/RAL Joint Workshop 28-29/4/04 Modelling of the ERLP injector system Christopher Gerth ASTeC, Daresbury Laboratory.
P. Krejcik LINAC 2004 – Lübeck, August 16-20, 2004 LCLS - Accelerator System Overview Patrick Krejcik on behalf of the LCLS.
‘S2E’ Study of Linac for TESLA XFEL P. Emma SLAC  Tracking  Comparison to LCLS  Re-optimization  Tolerances  Jitter  CSR Effects.
Capture and Transport Simulations of Positrons in a Compton Scheme Positron Source A. VIVOLI*, A. VARIOLA (LAL / IN2P3-CNRS), R. CHEHAB (IPNL & LAL / IN2P3-CNRS)
Optimization Objectives Top Level Questions 10 MeV – Incorporate studies on operability, cost etc. 50 MeV – More stringent beam specs  Optimize 50 MeV.
Injector Options for CLIC Drive Beam Linac Avni Aksoy Ankara University.
김 귀년 CHEP, KNU Accelerator Activities in Korea for ILC.
Awake electron beam requirements ParameterBaseline Phase 2Range to check Beam Energy16 MeV MeV Energy spread (  ) 0.5 %< 0.5 % ? Bunch Length (
Development of High Current Bunched Magnetized Electron DC Photogun MEIC Collaboration Meeting Fall 2015 October 5 – 7, 2015 Riad Suleiman and Matt Poelker.
J. Corlett. June 16, 2006 A Future Light Source for LBNL Facility Vision and R&D plan John Corlett ALS Scientific Advisory Committee Meeting June 16, 2006.
T. Atkinson*, A. Matveenko, A. Bondarenko, Y. Petenev Helmholtz-Zentrum Berlin für Materialien und Energie The Femto-Science Factory: A Multi-turn ERL.
Injector Requirements Linac Coherent Light Source Stanford Linear Accelerator Center Technical Review, March 1st, 2004 Cécile.
Ultra-short electron bunches by Velocity Bunching as required for Plasma Wave Acceleration Alberto Bacci (Sparc Group, infn Milano) EAAC2013, 3-7 June,
Rong Xiang I I Dark current measurements at the ELBE SRF gun Rong Xiang, Jochen Teichert, Pengnan Lu, Andre Arnold, Petr Murcek,
X-band Based FEL proposal
Photocathode based Electron Sources for Particle Accelerators – Yesterday, Today and Tomorrow B.L. Militsyn STFC ASTeC, UK European Workshop on Photocathodes.
J. C. T. Thangaraj Fermi National Accelerator Laboratory, Batavia, Illinois 1 Experimental studies on an emittance exchange beamline at the A0 photoinjector.
S.M. Polozov & Ko., NRNU MEPhI
Superconducting RF Photoelectron Source -
Beam dynamics for an X-band LINAC driving a 1 keV FEL
Robert Bosch, Kevin Kleman and the WiFEL team
Status of the MAX IV Short Pulse Facility
Sara Thorin, MAX IV Laboratory
Slice Parameter Measurements at the SwissFEL Injector Test Facility
BUNCH LENGTH MEASUREMENT SYSTEM FOR 500 KV PHOTOCATHODE DC GUN AT IHEP
Tunable Electron Bunch Train Generation at Tsinghua University
17/10/2016 Reserch Activity Report 6D Phase Space Electron Beam Analysis And Optimization For Rf Linac Based Inverse Compton Scattering Radiation Sources.
Experimental Overview
Magnetized Bunched Electron Beam from DC High Voltage Photogun
Review of Application to SASE-FELs
The Cornell High Brightness Injector
F. Villa Laboratori Nazionali di Frascati - LNF On behalf of Sparc_lab
ERL working modes Georg Hoffstaetter, Professor Cornell University / CLASSE / SRF group & ERL effort High Current mode High Coherence mode High Buch charge.
What did we learn from TTF1 FEL?
Capture and Transmission of polarized positrons from a Compton Scheme
CEPC Injector Damping Ring
Laser assisted emittance exchange to reduce the X-ray FEL size
Simulation Calculations
R. Suleiman and M. Poelker September 29, 2016
Modified Beam Parameter Range
Longitudinal-to-transverse mapping and emittance transfer
Longitudinal-to-transverse mapping and emittance transfer
LCLS FEL Parameters Heinz-Dieter Nuhn, SLAC / SSRL April 23, 2002
COMB beam: TSTEP simulations up to THz station
Proposal for Smith-Purcell radiation experiment at SPARC_LAB
Electron Optics & Bunch Compression
New VUV-FEL Simulation results
Injector for the Electron Cooler
Presentation transcript:

Radiation Physics | ELBE | SRF Photo Injector for Electron- Laser Interaction LA 3 NET conference: Laser applications at accelerators, Mallorca, Spain, th March 2015 Pengnan Lu on behalf of the ELBE and the Rossendorf SRF Gun Crew

Radiation Physics | ELBE | Page 2 Outline Simulation design Simulation results Motivation Check with first experiment results Motiv. Design Results Check

Radiation Physics | ELBE | SRF Gun ELBE interest of high bunch charge 1 nC, 5 MeV electron bunch expected. (500 kHz) Page 3 Motiv. Design Results Check

Radiation Physics | ELBE | Page 4 Motiv. Design Results Check A. Jochmann, et. al., PRL 111, (2013) DRACO laser: 30 µm rms beam size laser e - must < 30 µm Compton Back Scattering (CBS) experiment e-e-

Radiation Physics | ELBE | Page 5 Longitudinal strategy Longitudinal  transverse e. g., Energy spread  emittance↗ Keep low energy spread SRF Gun Linac 1Chicane 1Linac 2Chicane 2Long driftCBS Longitudinal space charge “benefits” in drift distance Motiv. Design Results Check

Radiation Physics | ELBE | Page 6 Transverse strategy Motiv. Design Results Check SRF Gun: 5 free parameters scanning, tradeoff decision 80 m beamline: 35 free parameters, automatic simplex optimization emittance beam size

Radiation Physics | ELBE | Page 7 Motiv. Design Results Check Simulation scheme SRF Gun (0 ~ 5 MeV) UV + CS 2 Te  initial phase space gun cavity acceleration space charge effect ELBE beamline (5 ~ 22.5 MeV) 3rd order matrix Coherent Synchrotron Radiation (CSR) Longitudinal Space Charge (LSC) Longitudinal wake effects ASTRA elegant Labview Troubles data file manipulation result plotting recode for optimization user

Radiation Physics | ELBE | Page 8 Motiv. Design Results Check Simulation tool Make something alive after Ph. D. …

Radiation Physics | ELBE | Page 9 SRF Gun parameters determination Motiv. Design Results Check short UV laser: 1.3 ps, or else: 5ps: Longitudinal phase space chicane linac final gun laser phase for energy & energy spread X: laser phase Y: initial bunch size Color: energy spread X: laser phase Y: initial bunch size Color: final bunch size X: laser phase Y: initial bunch size Color: transverse emittance Initial beam size: the lager the better cathode position, DC voltage…

Radiation Physics | ELBE | Page 10 SRF Gun output phase space Motiv. Design Results Check Energy = 5.368(MeV); dt = 4.337(ps); dE = 5.567(keV); Ez = (ps*keV); X = 4.328(mm); X' = 5.403(mrad); Ex = 6.030(um); Y = 4.328(mm); Y' = 5.403(mrad); Ey = 6.037(um);

Radiation Physics | ELBE | Page 11 transport results — longitudinal Motiv. Design Results Check positiongun exit before Linac 1 after Linac 1 after Linac 2 after Chicane 2 CBS point energy (MeV) dt (ps) dE (keV) Ez (ps*keV) Energy decrease: longitudinal wakes & coherent synchrotron radiation (CSR) dt & dE changes in drift: longitudinal space charge (LSC)

Radiation Physics | ELBE | Page 12 Transport results — transport Motiv. Design Results Check Beam parameters at the CBS point Energy = (MeV); dt = 2.877(ps); dE = (keV); Ez = (ps*keV); X = 0.021(mm); X' = (mrad); Ex = (um); Y = 0.021(mm); Y' = (mrad); Ey = 7.279(um); See Jakob’s report tomorrow

Radiation Physics | ELBE | Page 13 Compress the bunch to 1 pC Motiv. Design Results Check Beam parameters at the CBS point. Energy = (MeV); dt = 1.013(ps); dE = 93.29(keV); Ez = (ps*keV); X = 0.029(mm); X' = (mrad); Ex = (um); Y = 0.028(mm); Y' = (mrad); Ey = (um);

Radiation Physics | ELBE | Page 14 For better longitudinal phase space… Motiv. Design Results Check Beam parameters at the CBS point. Energy = (MeV); dt = 1.021(ps); dE = (keV); Ez = (ps*keV); X = 0.019(mm); X' = (mrad); Ex = 9.232(um); Y = 0.018(mm); Y' = (mrad); Ey = (um);

Radiation Physics | ELBE | Page 15 First measurements Motiv. Design Results Check EnergyEnergy spread emittanceBeam size Bunch length

Radiation Physics | ELBE | Page 16 Comparison to experiments Motiv. Design Results Check 4.5MeV, 1.8 pC, beam transport in dogleg laser/initial

Radiation Physics | ELBE | Page 17 Thank you for your attention!