Copyright © 2014, 2010, 2007 Pearson Education, Inc.

Slides:



Advertisements
Similar presentations
Lesson 2.2, page 273 Quadratic Functions
Advertisements

Quadratic Functions.
Quadratic Functions and Equations
If the leading coefficient of a quadratic equation is positive, then the graph opens upward. axis of symmetry f(x) = ax2 + bx + c Positive #
Objectives Identify quadratic functions and determine whether they have a minimum or maximum. Graph a quadratic function and give its domain and range.
§ 8.3 Quadratic Functions and Their Graphs.
Section 8.4 Quadratic Functions.
§ 8.3 Quadratic Functions and Their Graphs. Graphing Quadratic Functions Blitzer, Intermediate Algebra, 5e – Slide #2 Section 8.3 The graph of any quadratic.
Quadratic Functions.
Graphing Quadratic Functions
Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1 3 Polynomial and Rational Functions Copyright © 2013, 2009, 2005 Pearson Education, Inc.
3.3 Analyzing Graphs of Quadratic Functions
Solving Quadratic Equations by Graphing
Graphing Quadratic Functions
Chapter 2 Polynomial and Rational Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Quadratic Functions.
Copyright © Cengage Learning. All rights reserved. Quadratic Equations, Quadratic Functions, and Complex Numbers 9.
To introduce the general form of a quadratic equation To write quadratic equations that model real-world data To approximate the x-intercepts and other.
Quadratic Functions. The graph of any quadratic function is called a parabola. Parabolas are shaped like cups, as shown in the graph below. If the coefficient.
Copyright © 2014, 2010, 2007 Pearson Education, Inc. 1 1 Chapter 9 Quadratic Equations and Functions.
Quadratic Functions Chapter 7. Vertex Form Vertex (h, k)
© 2008 Pearson Addison-Wesley. All rights reserved Chapter 1 Section 8-5 Quadratic Functions, Graphs, and Models.
§ 8.3 Quadratic Functions and Their Graphs. Blitzer, Intermediate Algebra, 4e – Slide #48 Graphing Quadratic Functions Graphs of Quadratic Functions The.
Graphs of Quadratic Functions Any quadratic function can be expressed in the form Where a, b, c are real numbers and the graph of any quadratic function.
Copyright © 2011 Pearson Education, Inc. Quadratic Functions and Inequalities Section 3.1 Polynomial and Rational Functions.
Section 6 Part 1 Chapter 9. 1 Copyright © 2012, 2008, 2004 Pearson Education, Inc. Objectives More About Parabolas and Their Applications Find.
Quadratic Functions Objectives: Graph a Quadratic Function using Transformations Identify the Vertex and Axis of Symmetry of a Quadratic Function Graph.
Holt McDougal Algebra Properties of Quadratic Functions in Standard Form This shows that parabolas are symmetric curves. The axis of symmetry is.
9.4 Graphing Quadratics Three Forms
Graphing Quadratic Functions Graph quadratic functions of the form f ( x ) = ax 2. 2.Graph quadratic functions of the form f ( x ) = ax 2 + k. 3.Graph.
Graphs of Quadratic Functions
Definition of a Polynomial Function Let n be a nonnegative integer and let a n, a n-1,…, a 2, a 1, a 0, be real numbers with a n  0. The function defined.
2.3 Quadratic Functions. A quadratic function is a function of the form:
Sections 11.6 – 11.8 Quadratic Functions and Their Graphs.
Copyright © 2011 Pearson Education, Inc. Publishing as Prentice Hall.
Graphing Quadratic Functions Digital Lesson. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 Quadratic function Let a, b, and c be.
Section 3.3 Quadratic Functions. A quadratic function is a function of the form: where a, b, and c are real numbers and a 0. The domain of a quadratic.
3.1. Standard (vertex) form General form  Standard (vertex) form f(x)=a(x-h) 2 +k ◦ Open up or down? Max or min? ◦ Vertex is (h, k) ◦ Find x-intercepts.
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Quadratic Functions and Models ♦ Learn basic concepts about quadratic functions.
CHAPTER 10 LESSON OBJECTIVES. Objectives 10.1 Students will be able to: Identify quadratic functions and determine whether they have a minimum or maximum.
Do Now: Solve the equation in the complex number system.
Section 3.3 Analyzing Graphs of Quadratic Functions Copyright ©2013, 2009, 2006, 2001 Pearson Education, Inc.
F(x) = x 2 Let’s review the basic graph of f(x) = x xf(x) = x
Do Now: Solve the equation in the complex number system.
Section 2.2 Quadratic Functions. Thursday Bellwork 4 What does a quadratic function look like? 4 Do you remember the standard form? 4 How could we use.
 FIND THE VERTEX, THE AXIS OF SYMMETRY, AND THE MAXIMUM OR MINIMUM VALUE OF A QUADRATIC FUNCTION USING THE METHOD OF COMPLETING THE SQUARE.  GRAPH QUADRATIC.
Graphing Quadratic Functions. Math Maintenance Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 3.
Write each expression in standard polynomial form. Welcome! Pick up a new notes, then complete the problems below
Quadratic Functions Sections Quadratic Functions: 8.1 A quadratic function is a function that can be written in standard form: y = ax 2 + bx.
Key Components for Graphing a Quadratic Function.
Section 3.3 Analyzing Graphs of Quadratic Functions Copyright ©2013, 2009, 2006, 2005 Pearson Education, Inc.
Quadratic Functions PreCalculus 3-3. The graph of any quadratic function is called a parabola. Parabolas are shaped like cups, as shown in the graph below.
Graphing Quadratic Functions Digital Lesson. 2 Quadratic function Let a, b, and c be real numbers a  0. The function f (x) = ax 2 + bx + c is called.
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Copyright © 2006 Pearson Education, Inc
Section 2.2 Quadratic Functions
2.1- Graphing Quadratic Functions
Section 3.1 Quadratic Functions
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Graphing Quadratic Functions
Graphing Quadratic Functions
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Precalculus Essentials
Graphing Quadratic Functions
Warm Up Evaluate (plug the x values into the expression) x2 + 5x for x = 4 and x = –3. 2. Generate ordered pairs for the function y = x2 + 2 with the.
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Graphing Quadratic Functions
Graphing Quadratic Functions
Graphing Quadratic Functions
Analyzing Graphs of Quadratic Functions
Quadratic Functions and Equations Lesson 1: Graphing Quadratic Functions.
Presentation transcript:

Copyright © 2014, 2010, 2007 Pearson Education, Inc. Chapter 3 Polynomial and Rational Functions 3.1 Quadratic Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc. 1

Objectives: Recognize characteristics of parabolas. Graph parabolas. Determine a quadratic function’s minimum or maximum value. Solve problems involving a quadratic function’s minimum or maximum value.

The Standard Form of a Quadratic Function The quadratic function is in standard form. The graph of f is a parabola whose vertex is the point (h, k). The parabola is symmetric with respect to the line x = h. If a > 0, the parabola opens upward; if a < 0, the parabola opens downward.

Graphing Quadratic Functions with Equations in Standard Form To graph 1. Determine whether the parabola opens upward or downward. If a > 0, it opens upward. If a < 0, it opens downward. 2. Determine the vertex of the parabola. The vertex is (h, k). 3. Find any x-intercepts by solving f(x) = 0. The function’s real zeros are the x-intercepts.

Graphing Quadratic Functions with Equations in Standard Form (continued) To graph 4. Find the y-intercept by computing f(0). 5. Plot the intercepts, the vertex, and additional points as necessary. Connect these points with a smooth curve that is shaped like a bowl or an inverted bowl.

Example: Graphing a Quadratic Function in Standard Form Graph the quadratic function Step 1 Determine how the parabola opens. a = –1, a < 0; the parabola opens downward. Step 2 Find the vertex. The vertex is at (h, k). Because h = 1 and k = 4, the parabola has its vertex at (1, 4)

Example: Graphing a Quadratic Function in Standard Form (continued) Step 3 Find the x-intercepts by solving f(x) = 0. The x-intercepts are (3, 0) and (–1, 0)

Example: Graphing a Quadratic Function in Standard Form (continued) Step 4 Find the y-intercept by computing f(0). The y-intercept is (0, 3).

Example: Graphing a Quadratic Function in Standard Form The parabola opens downward. The x-intercepts are (3, 0) and (–1, 0). The y-intercept is (0, 3). The vertex is (1, 4).

The Vertex of a Parabola Whose Equation is Consider the parabola defined by the quadratic function The parabola’s vertex is The x-coordinate is The y-coordinate is found by substituting the x-coordinate into the parabola’s equation and evaluating the function at this value of x.

Graphing Quadratic Functions with Equations in the Form To graph 1. Determine whether the parabola opens upward or downward. If a > 0, it opens upward. If a < 0, it opens downward. 2. Determine the vertex of the parabola. The vertex is 3. Find any x-intercepts by solving f(x) = 0. The real solutions of are the x-intercepts.

Graphing Quadratic Functions with Equations in the Form (continued) To graph 4. Find the y-intercept by computing f(0). Because f(0) = c (the constant term in the function’s equation), the y-intercept is c and the parabola passes through (0, c). 5. Plot the intercepts, the vertex, and additional points as necessary. Connect these points with a smooth curve.

Example: Graphing a Quadratic Function in the Form Graph the quadratic function Step 1 Determine how the parabola opens. a = –1, a < 0, the parabola opens downward. Step 2 Find the vertex. The x-coordinate of the vertex is a = –1, b = 4, and c = 1

Example: Graphing a Quadratic Function in the Form (continued) Step 2 (continued) find the vertex. The coordinates of the vertex are We found that x = 2 at the vertex. The coordinates of the vertex are (2, 5).

Example: Graphing a Quadratic Function in the Form (continued) Step 3 Find the x-intercepts by solving f(x) = 0. The x-intercepts are (–0.2, 0) and (4.2, 0).

Example: Graphing a Quadratic Function in the Form (continued) Step 4 Find the y-intercept by computing f(0). The y-intercept is (0, 1).

Example: Graphing a Quadratic Function in the Form (continued) Step 5 Graph the parabola. The x-intercepts are (–0.2, 0) and (4.2, 0). The y-intercept is (0, 1). The vertex is (2, 5). The axis of symmetry is x = 2.

Minimum and Maximum: Quadratic Functions Consider the quadratic function 1. If a > 0, then f has a minimum that occurs at This minimum value is 2. If a < 0, then f has a maximum that occurs at This maximum value is

Minimum and Maximum: Quadratic Functions (continued) Consider the quadratic function In each case, the value of gives the location of the minimum or maximum value. The value of y, or gives that minimum or maximum value.

Example: Obtaining Information about a Quadratic Function from Its Equation Consider the quadratic function Determine, without graphing, whether the function has a minimum value or a maximum value. a = 4; a > 0. The function has a minimum value.

Example: Obtaining Information about a Quadratic Function from Its Equation (continued) Consider the quadratic function Find the minimum or maximum value and determine where it occurs. a = 4, b = –16, c = 1000 The minimum value of f is 984. This value occurs at x = 2.

Example: Obtaining Information about a Quadratic Function from Its Equation Consider the quadratic function Identify the function’s domain and range (without graphing). Like all quadratic functions, the domain is We found that the vertex is at (2, 984). a > 0, the function has a minimum value at the vertex. The range of the function is

Strategy for Solving Problems Involving Maximizing or Minimizing Quadratic Functions 1. Read the problem carefully and decide which quantity is to be maximized or minimized. 2. Use the conditions of the problem to express the quantity as a function in one variable. 3. Rewrite the function in the form

Strategy for Solving Problems Involving Maximizing or Minimizing Quadratic Functions (continued) 4. Calculate If a > 0, f has a minimum at This minimum value is If a < 0, f has a maximum at This maximum value is 5. Answer the question posed in the problem.

Example: Maximizing Area You have 120 feet of fencing to enclose a rectangular region. Find the dimensions of the rectangle that maximize the enclosed area. What is the maximum area? Step 1 Decide what must be maximized or minimized We must maximize area.

Example: Maximizing Area (continued) Step 2 Express this quantity as a function in one variable. We must maximize the area of the rectangle, A = xy. We have 120 feet of fencing, the perimeter of the rectangle is 120. 2x + 2y = 120 Solve this equation for y:

Example: Maximizing Area (continued) Step 3 Write the function in the form Step 4 Calculate a < 0, so the function has a maximum at this value. This means that the area, A(x), of a rectangle with perimeter 120 feet is a maximum when one of the rectangle’s dimensions, x, is 30 feet.

Example: Maximizing Area (continued) Step 5 Answer the question posed by the problem. You have 120 feet of fencing to enclose a rectangular region. Find the dimensions of the rectangle that maximize the enclosed area. What is the maximum area? The rectangle that gives the maximum square area has dimensions 30 ft by 30 ft. The maximum area is 900 square feet.