GZK ’s and their Detection with IceCube Interactions Interactions Results Results Implications for the IceCube Implications for the IceCube Summary Summary.

Slides:



Advertisements
Similar presentations
Trigger issues for KM3NeT the large scale underwater neutrino telescope the project objectives design aspects from the KM3NeT TDR trigger issues outlook.
Advertisements

Atmospheric Neutrinos Barry Barish Bari, Bologna, Boston, Caltech, Drexel, Indiana, Frascati, Gran Sasso, L’Aquila, Lecce, Michigan, Napoli, Pisa, Roma.
11-September-2005 C2CR2005, Prague 1 Super-Kamiokande Atmospheric Neutrino Results Kimihiro Okumura ICRR Univ. of Tokyo ( 11-September-2005.
10/7/2003C.Spiering, VLVNT Workshop1. 10/7/2003C.Spiering, VLVNT Workshop2  With the aim of constructing a detector of km3 scale in the Northern hemisphere,
Super-Kamiokande Introduction Contained events and upward muons Updated results Oscillation analysis with a 3D flux Multi-ring events  0 /  ratio 3 decay.
Searching for the footprint of prompt atmospheric neutrino flux and beyond Guey-Lin Lin National Chiao-Tung U. Taiwan With N. Tung and F.-F. Lee KEKPH.
Kay Graf University of Erlangen for the ANTARES Collaboration 13th Lomonosov Conference on Elementary Particle Physics Moscow, August 23 – 29, 2007 Acoustic.
UHE Neutrino Astronomy Shigeru Yoshida Chiba University RESCEU 2003.
TeVPA, July , SLAC 1 Cosmic rays at the knee and above with IceTop and IceCube Serap Tilav for The IceCube Collaboration South Pole 4 Feb 2009.
1 EHE A quest for EHE neutrinos with the IceCube detector proposal for EHE neutrino search in string sample Aya Ishihara for the IceCube EHE pwg.
Reso Shanidze 1 Theoretical Bounds and Current Experimental Limits on the Diffuse Neutrino Flux Rezo Shanidze 17/06/2004 Seminar zu aktuellen.
EHE Neutrino Search with the IceCube Aya Ishihara The University of Wisconsin - Madison for the EHE Verification working group.
UHE Simulation Chiba U. Motivation Motivation Java class structure Java class structure Provided Methods Provided Methods Future Plan Future.
The IceCube Neutrino Observatory To Explore the EHE Universe Shigeru Yoshida The Chiba University The Baseline Performance.
The IceCube Neutrino Telescope Project overview and Status EHE Physics Example: Detection of GZK neutrinos TAUP2003 Shigeru Yoshida, Chiba University.
George W.S. Hou & M.A. Huang Center for Cosmology and Particle Astrophysics Department of Physics, National Taiwan University, 1, Sec. 4, Roosevelt Rd.,Taipei,
M. Kowalski Search for Neutrino-Induced Cascades in AMANDA II Marek Kowalski DESY-Zeuthen Workshop on Ultra High Energy Neutrino Telescopes Chiba,
SUSY06, June 14th, The IceCube Neutrino Telescope and its capability to search for EHE neutrinos Shigeru Yoshida The Chiba University (for the IceCube.
Propagation of UHE in Earth Interactions Interactions First Results First Results Implications for the IceCube Implications for the IceCube Future Plan.
Search for Extremely-high Energy Cosmic Neutrino with IceCube Chiba Univ. Mio Ono.
EHE MC Check K. Mase* on behalf of EHE penguins, Chiba university*
Energy Reconstruction Algorithms for the ANTARES Neutrino Telescope J.D. Zornoza 1, A. Romeyer 2, R. Bruijn 3 on Behalf of the ANTARES Collaboration 1.
GZK EHE detection What is the GZK mechanism? EHE  Propagation in the Earth Expected intensities at the IceCube depth Atmospheric  – background Event.
EHE Lepton Propagation in the Earth and Its Implications to the IceCube EHE  Propagation in the Earth EHE  Propagation in the Earth What is the.
IceCube 1400 m 2400 m AMANDA South Pole IceTop Skiway 80 Strings 4800 PMT Instrumented volume: 1 km3 (1 Gt) IceCube is designed to detect neutrinos of.
Gary C. Hill, CCAPP Symposium 2009, Ohio State University, October 12th, 2009 Photograph: Forest Banks Gary C. Hill University of Wisconsin, Madison for.
2006/6/211 IceCube EHE analysis Our findings and roadmap to analysis Shigeru Yoshida For the EHE working group.
JULIeT (Java-based UHE Lepton Integral Transporter) Motivation Motivation Java class structure Java class structure What you can do What you can do The.
High Energy Workshop 2006 Summary and status Shigeru Yoshida (Chiba University) For the EHE( “ track and cascade ” ) WG.
The IceCube High Energy Telesope The detector elements Expected Sensitivity Project Status Shigeru Yoshida Dept. of Physics CHIBA Univ. ICRC 2003.
Science Potential/Opportunities of AMANDA-II  S. Barwick ICRC, Aug 2001 Diffuse Science Point Sources Flavor physics Transient Sources 
Reconstruction Of EHE  /  events with stochastic energy loss A quasi-perturbation approach Shigeru Yoshida Chiba University Mons 2003.
High Energy Verification Status and plan for PY Shigeru Yoshida (Chiba University)
A feasibility study for the detection of SuperNova explosions with an Undersea Neutrino Telescope A. Leisos, A. G. Tsirigotis, S. E. Tzamarias Physics.
EHE Search for EHE neutrinos with the IceCube detector Aya Ishihara for the IceCube collaboration Chiba University.
Ice-fishing for Cosmic Neutrinos Subhendu Rakshit TIFR, Mumbai.
Kate Husband Cambridge University, UK Development of an Online Filter for Selection of Cascade-like Events in IceCube Supervisor: Eike Middell.
CIPANP 2006K. Filimonov, UC Berkeley From AMANDA to IceCube: Neutrino Astronomy at the South Pole Kirill Filimonov University of California, Berkeley.
Why Neutrino ? High energy photons are absorbed beyond ~ 150Mpc   HE  LE  e - e + HE s are unique to probe HE processes in the vicinity of cosmic.
Neutrino Diffuse Fluxes in KM3NeT Rezo Shanidze, Thomas Seitz ECAP, University of Erlangen (for the KM3NeT consortium) 15 October 2009 Athens, Greece.
SEARCHING FOR A DIFFUSE FLUX OF ULTRA HIGH-ENERGY EXTRATERRESTRIAL NEUTRINOS WITH ICECUBE Henrik Johansson, for the IceCube collaboration LLWI H.
March 02, Shahid Hussain for the ICECUBE collaboration University of Delaware, USA.
Humberto Salazar (FCFM-BUAP) for the Pierre Auger Collaboration, CTEQ- Fermilab School Lima, Peru, August 2012 Ultrahigh Cosmic Rays: The highest energy.
Paul Sommers Fermilab PAC Nov 12, 2009 Auger Science South and North.
AMANDA. Latest Results of AMANDA Wolfgang Rhode Universität Dortmund Universität Wuppertal for the AMANDA Collaboration.
AMANDA Per Olof Hulth The Wierdest wonder Is it good or is it bad?
1 水质契仑科夫探测器中的中子识别 张海兵 清华大学 , 南京 First Study of Neutron Tagging with a Water Cherenkov Detector.
Detection of electromagnetic showers along muon tracks Salvatore Mangano (IFIC)
Alexander Kappes Erlangen Centre for Astroparticle Physics for the ANTARES collaboration IAU GA, SpS 10, Rio de Janeiro, Aug Status of Neutrino.
The AMANDA-II Telescope - Status and First Results - Ralf Wischnewski / DESY-Zeuthen for the AMANDA Collaboration TAUP2001, September.
PHY418 Particle Astrophysics
Doug Cowen, Tyce DeYoung, Soeb Razzaque April 25, 2006 A Novel Tau Signature in Neutrino Telescopes UHE Tau Neutrino Workshop Beijing, China.
5 June 2002DAQ System Engineering Requirements 1 DAQ System Requirements DOM Main Board Engineering Requirements Review David Nygren.
Simulation of a hybrid optical, radio, and acoustic neutrino detector Justin Vandenbroucke with D. Besson, S. Boeser, R. Nahnhauer, P. B. Price IceCube.
Nearly vertical muons from the lower hemisphere in the Baikal neutrino experiment Zh. Dzhilkibaev - INR (Moscow) for the Baikal Collaboration ( Uppsala,
31/03/2008Lancaster University1 Ultra-High-Energy Neutrino Astronomy From Simon Bevan University College London.
1 slide Brennan Hughey University of Wisconsin – Madison for the AMANDA Collaboration Recent Results From the AMANDA Experiment Rencontres du Vietnam August.
AMANDA Per Olof Hulth The Wierdest wonder Is it good or is it bad?
Search for Ultra-High Energy Tau Neutrinos in IceCube Dawn Williams University of Alabama For the IceCube Collaboration The 12 th International Workshop.
EHE Search for EHE neutrinos with the IceCube detector Aya Ishihara Chiba University.
Bergische Universität Wuppertal Jan Auffenberg et al. Rome, Arena ARENA 2008 A radio air shower detector to extend IceCube ● Three component air.
Imaging the Neutrino Universe with AMANDA and IceCube
completed in austral season South Pole completed in austral season.
An expected performance of Dubna neutrino telescope
Recent Results of Point Source Searches with the IceCube Neutrino Telescope Lake Louise Winter Institute 2009 Erik Strahler University of Wisconsin-Madison.
IC40 Physics Run Preparations
Event Rates vs Cross Sections
08/27/04 Strategies for the search for prompt muons in the downgoing
Neutrinos as probes of ultra-high energy astrophysical phenomena
ICRC2011, 32ND INTERNATIONAL COSMIC RAY CONFERENCE, BEIJING 2011
Presentation transcript:

GZK ’s and their Detection with IceCube Interactions Interactions Results Results Implications for the IceCube Implications for the IceCube Summary Summary Shigeru Yoshida Dept. of Physics CHIBA Univ. CHIBA Univ. Chiba/Nagoya 2003

IceCube 1400 m 2400 m AMANDA South Pole IceTop Skiway 80 Strings 80 Strings 4800 PMT 4800 PMT Instrumented volume: 1 km3 (1 Gt) Instrumented volume: 1 km3 (1 Gt) IceCube is designed to detect neutrinos of all flavors at energies from 10 7 eV (SN) to eV IceCube is designed to detect neutrinos of all flavors at energies from 10 7 eV (SN) to eV

1.4 km 1km Upward Ice Rock ν ± π γ ν + e - e 1km lepton ν

UHE (EeV or even higher) Neutrino Events Arriving Extremely Horizontally Needs Detailed Estimation Limited Solid Angle Window (  N A ) -1 ~ 600 (  / cm 2 ) -1 (  /2.6g cm -3 ) -1 [km] Involving the interactions generating electromagnetic/hadron cascades NN  X e + e - Chiba/Naoya 2003

e e      e/     Weak Incoming Products Weak Cascades Decay Weak Pair/decay Bremss Pair PhotoNucl. Decay Pair Pair Bremss Decay Weak Decay

Chiba/Nagoya 2003 Cross Sections and the Energy Loss Term CTEQ5 Parton Distribution for the evaluation

Chiba/Nagoya 2003

Muon(Neutrinos) from   Nadir Angle

e e      e/     Weak Incoming Products Weak Cascades Decay Weak Pair/decay Bremss Pair PhotoNucl. Decay Pair Pair Bremss Decay Weak Decay

Chiba/Nagoya 2003 Tau(Neutrinos) from    Suppression By  decay  pair contribution

GZK Neutrino Production K 411 photons / cm x cm 2 γ p n p π + μ + ν e + ν γ E = eV E 0.8 x eV ~ Conventional Mechanism of EHE neutrinos!!

Chiba/Nagoya 2003

1.4 km 1km Upward Ice Rock ν ± π γ ν + e - e 1km lepton ν

Chiba/Nagoya 2003 A factor of 2 enhancement Due to the heavier lepton production

Chiba/Nagoya 2003

e e      e/     Weak Incoming Products Weak Cascades Decay Weak Pair/decay Bremss Pair PhotoNucl. Decay Pair Pair Bremss Decay Weak Decay

Chiba/Nagoya 2003 Upward-going

Chiba/Nagoya 2003 Downward going!!

1.4 km 1km Upward Ice Rock ν ± π γ ν + e - e 1km Downward ν γ γ + e - e lepton

Chiba/Nagoya 2003

Down-going events dominates… 1400 m 2800 m 11000m UpDown

1.4 km 1km Downward Upward Ice Rock ν ν ± π γ γ γ ν + e - e 1km + e - e lepton EHE events!

Chiba/Nagoya 2003 Downward going!! 1 km 2 year

Energy Spectrum Diffuse Search Blue: after downgoing muon rejection Red: after cut on N hit to get ultimate sensitivity

Chiba/Nagoya 2003 Intensity of EHE  and  GZK model I  (E>10PeV) I  (E>10PeV) RATE [/yr/ km 2 ] m=4 Z max =4 Down Up m=7 Z max =5 Down Up [cm -2 sec -1 ]

Chiba/Nagoya 2003 GZK model dependence

Chiba/Nagoya 2003 Findings…  appeared in EeV-10EeV is our prime target on UHE detection. 1/100-1/500 of primary  intensity! Downward  and  make main contributions in EeV Energy Estimation would be a key for the bg reduction GZK is DETECTABLE by IceCube events/year

Chiba/Nagoya 2003 We still need… IceCube Sensitivity on energy-deposit basis -Simulation of the EHE energy deposit profile -Smart Background rejection