§ 8.3 Quadratic Functions and Their Graphs. Graphing Quadratic Functions Blitzer, Intermediate Algebra, 5e – Slide #2 Section 8.3 The graph of any quadratic.

Slides:



Advertisements
Similar presentations
Lesson 2.2, page 273 Quadratic Functions
Advertisements

LIAL HORNSBY SCHNEIDER
Quadratic Functions.
Copyright © 2006 Pearson Education, Inc. Publishing as Pearson Addison-Wesley.
Quadratic Functions and Equations
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Objectives Identify quadratic functions and determine whether they have a minimum or maximum. Graph a quadratic function and give its domain and range.
§ 8.3 Quadratic Functions and Their Graphs.
Section 8.4 Quadratic Functions.
Quadratic Functions.
Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1 3 Polynomial and Rational Functions Copyright © 2013, 2009, 2005 Pearson Education, Inc.
Warm Up 1. Evaluate x2 + 5x for x = 4 and x = –3. 36; –6
§ 10.4 The Parabola; Identifying Conic Sections. Blitzer, Intermediate Algebra, 5e – Slide #2 Section 10.4 Equation of a Parabola We looked at parabolas.
Introduction Imagine the path of a basketball as it leaves a player’s hand and swooshes through the net. Or, imagine the path of an Olympic diver as she.
Quadratic Functions A quadratic function is a function with a formula given by the standard form f(x) = ax2+bx+c, where a, b, c, are constants and Some.
Chapter 2 Polynomial and Rational Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Quadratic Functions.
Rev.S08 MAC 1105 Module 4 Quadratic Functions and Equations.
FURTHER GRAPHING OF QUADRATIC FUNCTIONS Section 11.6.
Copyright © Cengage Learning. All rights reserved. Quadratic Equations, Quadratic Functions, and Complex Numbers 9.
3 Polynomial and Rational Functions © 2008 Pearson Addison-Wesley. All rights reserved Sections 3.1–3.4.
To introduce the general form of a quadratic equation To write quadratic equations that model real-world data To approximate the x-intercepts and other.
Chapter 10 Quadratic Equations and Functions
Graph quadratic equations. Complete the square to graph quadratic equations. Use the Vertex Formula to graph quadratic equations. Solve a Quadratic Equation.
Copyright © Cengage Learning. All rights reserved.
Chapter 8 Review Quadratic Functions.
Quadratic Functions and Their Graphs
Quadratic Functions. The graph of any quadratic function is called a parabola. Parabolas are shaped like cups, as shown in the graph below. If the coefficient.
On Page 234, complete the Prerequisite skills #1-14.
Section 2.2 Quadratic Functions.
© 2008 Pearson Addison-Wesley. All rights reserved Chapter 1 Section 8-5 Quadratic Functions, Graphs, and Models.
§ 8.3 Quadratic Functions and Their Graphs. Blitzer, Intermediate Algebra, 4e – Slide #48 Graphing Quadratic Functions Graphs of Quadratic Functions The.
Graphing Quadratic Functions 2015/16 Digital Lesson.
Graphs of Quadratic Functions Any quadratic function can be expressed in the form Where a, b, c are real numbers and the graph of any quadratic function.
Copyright © 2011 Pearson Education, Inc. Quadratic Functions and Inequalities Section 3.1 Polynomial and Rational Functions.
Quadratic Functions Objectives: Graph a Quadratic Function using Transformations Identify the Vertex and Axis of Symmetry of a Quadratic Function Graph.
Vertical and horizontal shifts If f is the function y = f(x) = x 2, then we can plot points and draw its graph as: If we add 1 (outside change) to f(x),
Graphs of Quadratic Functions
Over Chapter 8 A.A B.B C.C D.D 5-Minute Check 2 (2z – 1)(3z + 1) Factor 6z 2 – z – 1, if possible.
Definition of a Polynomial Function Let n be a nonnegative integer and let a n, a n-1,…, a 2, a 1, a 0, be real numbers with a n  0. The function defined.
Graphing Quadratic Functions y = ax 2 + bx + c. Graphing Quadratic Functions Today we will: Understand how the coefficients of a quadratic function influence.
2.4: Quadratic Functions.
Sections 11.6 – 11.8 Quadratic Functions and Their Graphs.
Chapter 4 Quadratic Functions and Various Nonlinear Topics Section 4.2
Copyright © Cengage Learning. All rights reserved. 4 Quadratic Functions.
1 Copyright © Cengage Learning. All rights reserved. 3 Functions and Graphs 3.6 Quadratic Functions.
ALGEBRA 2 10/23/14 REVIEW FOR TEST 2 (NON-CALCULATOR SECTION) What you’ll learn and why… I can learn how to solve the problems in the Practice Test so.
Lesson 1 Contents Example 1Graph a Quadratic Function Example 2Axis of Symmetry, y-Intercept, and Vertex Example 3Maximum or Minimum Value Example 4Find.
Twenty Questions Algebra 2012 EOC Review Twenty Questions
Dear Power point User, This power point will be best viewed as a slideshow. At the top of the page click on slideshow, then click from the beginning.
Section 2.2 Quadratic Functions. Thursday Bellwork 4 What does a quadratic function look like? 4 Do you remember the standard form? 4 How could we use.
Graphing Quadratic Equations A-SSE.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented.
Unit 10 – Quadratic Functions Topic: Characteristics of Quadratic Functions.
Graphing Quadratic Functions. Math Maintenance Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 3.
Quadratic Functions Sections Quadratic Functions: 8.1 A quadratic function is a function that can be written in standard form: y = ax 2 + bx.
Precalculus Chapter 2 Polynomial and Rational Functions.
Identifying Quadratic Functions. The function y = x 2 is shown in the graph. Notice that the graph is not linear. This function is a quadratic function.
Parabolas show up in the architecture of bridges. The parabolic shape is used when constructing mirrors for huge telescopes, satellite dishes and highly.
Quadratic Functions PreCalculus 3-3. The graph of any quadratic function is called a parabola. Parabolas are shaped like cups, as shown in the graph below.
Graphing Quadratic Functions Digital Lesson. 2 Quadratic function Let a, b, and c be real numbers a  0. The function f (x) = ax 2 + bx + c is called.
Graphing Quadratic Functions Solving by: Factoring
Identifying Quadratic Functions
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Module 4 Quadratic Functions and Equations
Dilrajkumar 06 X;a.
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Precalculus Essentials
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Chapter 8 – Quadratic Functions and Equations
Tutorial 3 Applications of the Derivative
Presentation transcript:

§ 8.3 Quadratic Functions and Their Graphs

Graphing Quadratic Functions Blitzer, Intermediate Algebra, 5e – Slide #2 Section 8.3 The graph of any quadratic function is a parabola. Parabolas are shaped either like bowls or like inverted bowls. Consider the quadratic equation: If a is positive, the parabola opens upward (like a bowl) and if a is negative, the parabola opens downward (like an inverted bowl). Whether the parabola opens upward or downward depends on the coefficient a of the leading term of the quadratic. In this section, we will learn to recognize characteristics of parabolas, will graph parabolas, and will determine a quadratic function’s maximum or minimum value.

Blitzer, Intermediate Algebra, 5e – Slide #3 Section 8.3 Graphing Quadratic Functions Graphs of Quadratic Functions The graph of the quadratic function is called a parabola.

Blitzer, Intermediate Algebra, 5e – Slide #4 Section 8.3 Graphing Quadratic Functions

Blitzer, Intermediate Algebra, 5e – Slide #5 Section 8.3 Graphing Quadratic Functions Graphing Quadratic Functions With Equations in the Form T To graph 1) Determine whether the parabola opens upward or downward. If a > 0, it opens upward. It a < 0, it opens downward. 2) Determine the vertex of the parabola. The vertex is (h, k). 3) Find any x-intercepts by replacing f (x) with 0. Solve the resulting Quadratic equation for x. 4) Find the y-intercept by replacing x with 0. 5) Plot the intercepts and vertex and additional points as necessary. Connect these points with a smooth curve that is shaped like a cup.

Blitzer, Intermediate Algebra, 5e – Slide #6 Section 8.3 Graphing Quadratic FunctionsEXAMPLE Graph the function SOLUTION We can graph this function by following the steps in the preceding box. We begin by identifying values for a, h, and k. a = -2b = -4c = -8 1) Determine how the parabola opens. Note that a, the coefficient of, is -2. Thus, a < 0; this negative value tells us that the parabola opens downward.

Graphing Quadratic Functions 2) Find the vertex. The vertex of the parabola is at (h, k). Because h = -4 and k = -8, the parabola has its vertex at (-4, -8). CONTINUED 3) Find the x-intercepts. Replace f (x) with 0 in Find x-intercepts, setting f (x) equal to 0. Blitzer, Intermediate Algebra, 5e – Slide #7 Section 8.3 Add to both sides. Divide both sides by 2. Apply the square root property. Simplify the radical. Subtract 4 from both sides.

Graphing Quadratic Functions Since no real solutions resulted from this step, there are no x- intercepts. CONTINUED 4) Find the y-intercept. Replace x with 0 in Blitzer, Intermediate Algebra, 5e – Slide #8 Section 8.3 The y-intercept is -40. The parabola passes through (0,-40). 5) Graph the parabola. With a vertex at (-4,-8), no x-intercepts, and a y-intercept at -40, the graph of f is shown below. The axis of symmetry is the vertical line whose equation is x = -4.

Graphing Quadratic FunctionsCONTINUED Blitzer, Intermediate Algebra, 5e – Slide #9 Section 8.3 y-intercept is: -40 Vertex: (-4,-8) Axis of symmetry: x = -4

Graphing Quadratic Functions Blitzer, Intermediate Algebra, 5e – Slide #10 Section 8.3 The Vertex of a Parabola Whose Equation is T Consider the parabola defined by the quadratic function The parabola’s vertex is

Blitzer, Intermediate Algebra, 5e – Slide #11 Section 8.3 Graphing Quadratic FunctionsEXAMPLE Graph the function Use the graph to identify its domain and its range. SOLUTION 1) Determine how the parabola opens. Note that a, the coefficient of, is 1. Thus, a > 0; this positive value tells us that the parabola opens upward. 2) Find the vertex. We know that the x-coordinate of the vertex is We identify a, b, and c for the given function. Note that a = 1, b = -4, and c = 6.

Blitzer, Intermediate Algebra, 5e – Slide #12 Section 8.3 Graphing Quadratic Functions Substitute the values of a and b into the equation for the x- coordinate: CONTINUED The x-coordinate for the vertex is 2. We substitute 2 for x in the equation of the function to find the corresponding y-coordinate. The vertex is (2,2). 3) Find the x-intercepts. Replace f (x) with 0 in the original function. We obtain. This equation cannot be solved by factoring. We will use the quadratic formula instead.

Blitzer, Intermediate Algebra, 5e – Slide #13 Section 8.3 Graphing Quadratic FunctionsCONTINUED Clearly, the discriminant is going to be negative, 16 – 24 = -8. Therefore, there will be no x-intercepts for the graph of the function. 4) Find the y-intercept. Replace x with 0 in the original function. The y-intercept is 6. The parabola passes through (0,6).

Blitzer, Intermediate Algebra, 5e – Slide #14 Section 8.3 Graphing Quadratic FunctionsCONTINUED 5) Graph the parabola. With a vertex of (2,2), no x-intercepts, and a y-intercept at 6, the graph of f is shown below. The axis of symmetry is the vertical line whose equation is x = 2. Vertex: (2,2) y-intercept is: 6 Axis of symmetry: x = 2 Domain: All real numbers Range: All real numbers greater than or equal to 2.

Blitzer, Intermediate Algebra, 5e – Slide #15 Section 8.3 Graphing Quadratic FunctionsCONTINUED Now we are ready to determine the domain and range of the original function. We can use the second parabola from the preceding page to do so. To find the domain, look for all inputs on the x-axis that correspond to points on the graph. To find the range, look for all the outputs on the y-axis that correspond to points on the graph. Looking at the first parabola from the preceding page, we see the parabola’s vertex is (2,2). This is the lowest point on the graph. Because the y-coordinate of the vertex is 2, outputs on the y-axis fall at or above 2.

Blitzer, Intermediate Algebra, 5e – Slide #16 Section 8.3 Minimums & Maximums Minimum and Maximum: Quadratic Functions Consider 1) If a > 0, then f has a minimum that occurs at This minimum value is 2) If a < 0, then f has a maximum that occurs at This maximum value is

Blitzer, Intermediate Algebra, 5e – Slide #17 Section 8.3 Minimums & MaximumsEXAMPLE A person standing close to the edge on the top of a 200-foot building throws a baseball vertically upward. The quadratic function models the ball’s height above the ground, s (t), in feet, t seconds after it was thrown. How many seconds does it take until the ball finally hits the ground? Round to the nearest tenth of a second.

Blitzer, Intermediate Algebra, 5e – Slide #18 Section 8.3 Minimums & MaximumsSOLUTION CONTINUED It might first be useful to have some sort of picture representing the situation. Below is some sort of picture. Point of interest

Blitzer, Intermediate Algebra, 5e – Slide #19 Section 8.3 Minimums & MaximumsCONTINUED When the ball is released, it is at a height of 200 feet. That is, when the ball is released, the value of s (t) = 200. By the same token, when the ball finally hits the ground, it will of course be 0 feet above the ground. That is, when the ball hits the ground, the value of s (t) = 0. Therefore, to determine for what value of t the ball hits the ground, we replace s (t) with 0 in the original function. This is the given function. Replace s (t) with 0. Factor -8 out of all terms. Divide both sides by -8.

Blitzer, Intermediate Algebra, 5e – Slide #20 Section 8.3 Minimums & MaximumsCONTINUED We will use the quadratic formula to solve this equation. Since time cannot be a negative quantity, the answer cannot be seconds. Therefore, the ball hits the ground after 6.05 seconds (to the nearest tenth of a second).

Blitzer, Intermediate Algebra, 5e – Slide #21 Section 8.3 Minimums & Maximums Strategy for Solving Problems Involving Maximizing or Minimizing Quadratic Functions 1) Read the problem carefully and decide which quantity is to be maximized or minimized. 2) Use the conditions of the problem to express the quantity as a function in one variable. 3) Rewrite the function in the form 4) Calculate. If a > 0, f has a minimum at. This minimum value is. If a < 0, f has a maximum at. This maximum value is. 5) Answer the question posed in the problem.

Blitzer, Intermediate Algebra, 5e – Slide #22 Section 8.3 Minimums & MaximumsEXAMPLE Among all pairs of numbers whose sum is 20, find a pair whose product is as large as possible. What is the maximum product? SOLUTION 1)Decide what must be maximized or minimized. We must maximize the product of two numbers. Calling the numbers x and y, and calling the product P, we must maximize P = xy. 2) Express this quantity as a function in one variable. In the formula P = xy, P is expressed in terms of two variables, x and y. However, because the sum of the numbers is 20, we can write x + y = 20.

Blitzer, Intermediate Algebra, 5e – Slide #23 Section 8.3 Minimums & Maximums We can solve this equation for y in terms of x, substitute the result into P = xy, and obtain P as a function of one variable. CONTINUED y = 20 - xSubtract x from both sides of the equation: x + y = 20. Now we substitute 20 – x for y in P = xy. P = xy = x(20 – x). Because P is now a function of x, we can write P (x) = x(20 – x). 3) Write the function in the form. We apply the distributive property to obtain

Blitzer, Intermediate Algebra, 5e – Slide #24 Section 8.3 Minimums & MaximumsCONTINUED 4) Calculate. If a < 0, the function has a maximum at this value. The voice balloons show that a = -1 and b = 20. P (x) = (20 – x)x = 20x - b = 20 a = -1 This means that the product, P, of two numbers who sum is 20 is a maximum when one of the numbers, x, is 10.

Blitzer, Intermediate Algebra, 5e – Slide #25 Section 8.3 Minimums & MaximumsCONTINUED 5) Answer the question posed by the problem. The problem asks for the two numbers and the maximum product. We found that one of the numbers, x, is 10. Now we must find the second number, y. The number pair whose sum is 20 and whose product is as large as possible is 10, 10. The maximum product is 10 x 10 = 100. y = 20 – x = 20 – 10 = 10.

Blitzer, Intermediate Algebra, 5e – Slide #26 Section 8.3 Minimums & MaximumsEXAMPLE You have 200 feet of fencing to enclose a rectangular plot that borders on a river. If you do not fence the side along the river, find the length and width of the plot that will maximize the area. What is the largest area that can be enclosed? SOLUTION 1) Decide what must be maximized or minimized. We must maximize area. What we do not know are the rectangle’s dimensions, x and y. xx y

Blitzer, Intermediate Algebra, 5e – Slide #27 Section 8.3 Minimums & MaximumsCONTINUED 2) Express this quantity as a function in one variable. Because we must maximize area, we have A = xy. We need to transform this into a function in which A is represented by one variable. Because you have 200 feet of fencing, the sum of the lengths of the three sides of the rectangle that need to be fenced is 200 feet. This means that 2x + y = 200. We can solve this equation for y in terms of x, substitute the result into A = xy, and obtain A as a function in one variable. We begin by solving for y. y = 200 – 2x Subtract 2x from both sides.

Blitzer, Intermediate Algebra, 5e – Slide #28 Section 8.3 Minimums & MaximumsCONTINUED Now we substitute 200 – 2x for y in A = xy. A = xy = x(200 – 2x) This function models the area, A (x), of any rectangle whose perimeter is 200 feet (and one side is not counted) in terms of one of its dimensions, x. The rectangle and its dimensions are illustrated in the picture at the beginning of this exercise. Because A is now a function of x, we can write A (x) = x(200 – 2x).

Blitzer, Intermediate Algebra, 5e – Slide #29 Section 8.3 Minimums & MaximumsCONTINUED 3) Write the function in the form. We apply the distributive property to obtain a = -2 b = 200 4) Calculate. If a < 0, the function has a maximum at this value. The voice balloons show that a = -2 and b = 200.

Blitzer, Intermediate Algebra, 5e – Slide #30 Section 8.3 Minimums & MaximumsCONTINUED 5) Answer the question posed in the problem. We found that x = 50. The picture at the beginning of this exercise shows that the rectangle’s other dimension is 200 – 2x = 200 – 2(50) = 200 – 100 = 100 feet. The dimensions of the rectangle that maximize the enclosed area are 50 feet by 100 feet. The rectangle that gives the maximum area has an area of (50 feet) x (100 feet) = 5,000 square feet. This means that the area, A (x), of a rectangle with a “3-sided” perimeter 200 feet is a maximum when the lengths of the two sides that are the same, x, are 50 feet.

In summary… Blitzer, Intermediate Algebra, 5e – Slide #31 Section 8.3 We consider two standard forms for the quadratic function. In either form, it is easy to see whether the parabola opens upward or downward. We just consider the sign of a in either equation. In the first form that we considered, we could easily see the vertex of the parabola. In the second form, we could easily see the y intercept. You must decide which form is easiest for you to use in a given situation. The vertex of the parabola is important. For a parabola opening upward, at the vertex we obtain a minimum function value. For a parabola opening downward, at the vertex we obtain a maximum function value. Have you met Mini and Maxi? Mini is always smiling. Maxi is always frowning.