h Height t Time 1 sec2 sec3 sec4 sec Velocity = 0, Slope =0 Moving upward, Slope > 0 Moving downward, slope <0 Touch down Throwing a glass ball up into the air 5 sec6 sec m>0 m=0 m<0
A Night Ride in a Roller Coaster m=0 Inflection Point Steepest Slope Use the light beam as the tangent line Change in Concavity Tangent line Goes Below Tangent line Goes Above
Critical Points & Signs of f ’(x) f’(x)=0 f “ (x) = 0 Inflection Point f ‘(x) > 0 Rising f ‘(x) < 0 Falling f’(x)=0
f(x) f’(x),m m=+4 m=+2 m=+1 m=0 m=-1 m=-1.5 m=-1 m=0 m=+1.5 m=+3 Visualizing the Derivative Locate the critical points: m = 0 ; Inflection point Positive Slope Negative Slope m = 0
f(x) f’(x),m Visualizing the Derivative (another method) Locate the critical points: m = 0 ; Inflection point Positive Slope Negative Slope m = 0
f(x)f(x) f “(x) f ’(x) f(x)f(x) f “(x) Inflection points