©David Dubofsky and 10-1 Thomas W. Miller, Jr. Chapter 10 T-bill and Eurodollar Futures One can use T-bill and Eurodollar futures to speculate on, or hedge.

Slides:



Advertisements
Similar presentations
FINC4101 Investment Analysis
Advertisements

Chapter 3 Introduction to Forward Contracts
Interest Rates Chapter 4.
1 Futures Futures Markets Futures and Forward Trading Mechanism Speculation versus Hedging Futures Pricing Foreign Exchange, stock index, and Interest.
Intermediate Investments F3031 Hedging Using Interest Rate Futures Contracts There are two main interest rate futures contracts –Eurodollar futures –US.
Ch26, 28 & 29 Interest Rate Futures, Swaps and CDS Interest-rate futures contracts Pricing Interest-rate futures Applications in Bond portfolio management.
Interest Rate Markets Chapter 5. Chapter Outline 5.1 Types of Rates 5.2Zero Rates 5.3 Bond Pricing 5.4 Determining zero rates 5.5 Forward rates 5.6 Forward.
Interest Rate Swaps and Agreements Chapter 28. Swaps CBs and IBs are major participants  dealers  traders  users regulatory concerns regarding credit.
Treasury bond futures: pricing and applications for hedgers, speculators, and arbitrageurs Galen Burghardt Taifex/Taiwan 7 June 2004.
Pricing Fixed-Income Securities. The Mathematics of Interest Rates Future Value & Present Value: Single Payment Terms Present Value = PV  The value today.
International Fixed Income Topic IA: Fixed Income Basics- Valuation January 2000.
© 2004 South-Western Publishing 1 Chapter 11 Fundamentals of Interest Rate Futures.
Futures Hedging Examples. Hedging Examples  T-Bills to Buy with T-Bill Futures  Debt Payment to Make with Eurodollar Futures  Futures in Portfolio.
McGraw-Hill/Irwin © 2008 The McGraw-Hill Companies, Inc., All Rights Reserved. Futures Markets and Risk Management CHAPTER 17.
Interest Rates and Rates of Return
Chapter 14 Futures Contracts Futures Contracts Our goal in this chapter is to discuss the basics of futures contracts and how their prices are quoted.
Drake DRAKE UNIVERSITY Fin 288 Interest Rates Futures Fin 288 Futures Options and Swaps.
1 1 Ch22&23 – MBA 567 Futures Futures Markets Futures and Forward Trading Mechanism Speculation versus Hedging Futures Pricing Foreign Exchange, stock.
© 2002 South-Western Publishing 1 Chapter 11 Fundamentals of Interest Rate Futures.
Techniques of asset/liability management: Futures, options, and swaps Outline –Financial futures –Options –Interest rate swaps.
Chapter 7 Risk Management with Futures Contracts
©David Dubofsky and 6-1 Thomas W. Miller, Jr. Chapter 6 Introduction to Futures Because futures are so very similar to forwards, be sure that you have.
Lecture Presentation Software to accompany Investment Analysis and Portfolio Management Seventh Edition by Frank K. Reilly & Keith C. Brown Chapter 22.
Copyright 2014 by Diane S. Docking1 Risk Management: Hedging with Futures.
3.1 Determination of Forward and Futures Prices Chapter 3.
Debt OPTIONS. Options on Treasury Securities: T-Bill Options Options on T-Bills give the holder the right to buy a T-Bill with a face value of $1M and.
Yield Curves and Term Structure Theory. Yield curve The plot of yield on bonds of the same credit quality and liquidity against maturity is called a yield.
© 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license.
Global foreign exchange market turnover. Foreign Exchange Transactions A foreign exchange market transaction is composed of: spot, outright forward and.
©David Dubofsky and 04-1 Thomas W. Miller, Jr. Chapter 4 Using Forwards to Manage Risk Trading forward and futures contracts (or other derivatives) with.
Understanding Interest Rates
Hedging Using Futures Contracts Finance (Derivative Securities) 312 Tuesday, 22 August 2006 Readings: Chapters 3 & 6.
Class 4 Forward and Futures Contracts. Overview n Forward contracts n Futures contracts n The relationship between forwards and futures n Valuation n.
Financial Risk Management for Insurers
Interest Rate Futures July Introduction  Interest rate Futures  Short term interest rate futures (STIR)  Long term interest rate futures (LTIR)
Chapter 6 Interest Rate Futures Options, Futures, and Other Derivatives, 8th Edition, Copyright © John C. Hull
Financial Options: Introduction. Option Basics A stock option is a derivative security, because the value of the option is “derived” from the value of.
Lecture Presentation Software to accompany Investment Analysis and Portfolio Management Eighth Edition by Frank K. Reilly & Keith C. Brown Chapter 21.
Futures Markets and Risk Management
Chapter Eight Risk Management: Financial Futures, Options, and Other Hedging Tools Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved.McGraw-Hill/Irwin.
Chapter 7 Interest Rate Forwards and Futures. Copyright © 2006 Pearson Addison-Wesley. All rights reserved. 7-2 Bond Basics U.S. Treasury  Bills (
Introduction to Derivatives
© 2004 South-Western Publishing 1 Chapter 11 Fundamentals of Interest Rate Futures.
INVESTMENTS | BODIE, KANE, MARCUS Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin CHAPTER 20 Futures, Swaps,
Using Futures & Options to Hedge Hedging is the creation of one risk to offset another risk. We will first look at the risk of being long in a currency;
Futures Markets and Risk Management
Interest Rate Futures Professor Brooks BA /14/08.
Chance/BrooksAn Introduction to Derivatives and Risk Management, 8th ed.Ch. 11: 1 Chapter 11: Forward and Futures Hedging Strategies Hedging is the tai.
Principles of Futures Cost of carry includes:
FIN 4329 Derivatives Part 1: Futures Markets and Contracts.
1 Ch. 11 Outline Interest rate futures – yield curve Discount yield vs. Investment Rate %” (bond equivalent yield): Pricing interest rate futures contracts.
Repo rate 1. A Namura security dealer, who just purchased 3-month U.S. treasury security at the government weekly auction at $98.65, finances the purchase.
© 2004 South-Western Publishing 1 Chapter 14 Swap Pricing.
Financial Risk Management of Insurance Enterprises Forward Contracts.
Derivatives in ALM. Financial Derivatives Swaps Hedge Contracts Forward Rate Agreements Futures Options Caps, Floors and Collars.
Chapter 3 Insurance, Collars, and Other Strategies.
©David Dubofsky and Thomas W. Miller, Jr. Chapter 11 An Introduction to Swaps A swap is an agreement between counter-parties to exchange cash flows.
Chapter 6 Interest Rate Futures 1. Day Count Convention Defines: –the period of time to which the interest rate applies –The period of time used to calculate.
Copyright © 2009 Pearson Prentice Hall. All rights reserved. Chapter 10 Derivatives: Risk Management with Speculation, Hedging, and Risk Transfer.
Hedging with Futures Dr A Vinay Kumar. Agenda Pricing Stock Index Futures Hedging Fundamentals –Short and Long Hedge –Basis and Basis Risk Minimum Variance.
082SIS52 Ryu Soo-hyun. Money Market  Money Market - Subsection of fixed income market - financial market for short-term borrowing & lending - provides.
Security Markets III Miloslav S Vosvrda Theory of Capital Markets.
Fixed income securities valuation Spot rates and forward rates and bond equivalent yields 1.
Interest Rate Futures Chapter 6
Chapter 6 Interest Rate Futures (part2)
SWAPS.
Interest Rate Futures Chapter 6
Chapter 6 Interest Rate Futures (part2)
Definition of Risk Variability of Possible Returns Or The Chance That The Outcome Will Not Be As Expected copyright anbirts.
Professor Chris Droussiotis
Presentation transcript:

©David Dubofsky and 10-1 Thomas W. Miller, Jr. Chapter 10 T-bill and Eurodollar Futures One can use T-bill and Eurodollar futures to speculate on, or hedge against changes in, short-term (3-months to a year) interest rates. The longs profit when interest rates fall; the shorts profit when interest rates rise (and fixed income instrument prices fall). The T-bill futures market is thinly traded (illiquid). Total open interest on Sept 13, 2002 was only 863 contracts. Total open interest of Eurodollar futures on Sept 13 th was almost 4.5 million contracts. The 1-month LIBOR futures contract is quite liquid.

©David Dubofsky and 10-2 Thomas W. Miller, Jr. T-bill Futures, I. Underlying asset is $1MM face value of 3-month Tbills IMM Index = 100 – dy dy is the forward discount yield on a 3 month T-bill: Where: F = face value = $1,000,000 for a T-bill futures contract P = price t = days to maturity (91 days for a 3-month T-bill) (A surprisingly difficult formula!)

©David Dubofsky and 10-3 Thomas W. Miller, Jr. T-bill Futures, II. Note that the discount yield is not a rate of return. If the day count method is actual/365, the annualized rate of return, r, with simple interest, is This is called the bond equivalent yield (if t < 182 days)

©David Dubofsky and 10-4 Thomas W. Miller, Jr. T-bill Futures, III. The futures discount yield is the forward yield on a 3-month T- bill, beginning on the delivery date of the contract. Example: –Suppose today is October 8, the delivery day for the Dec contract is Dec. 18 th, and the futures price is –Then, someone who goes long a T-bill futures contract has “essentially” agreed to buy $1 million face value of 3-month T-bills on Dec. 18 th, at a forward discount yield of 2.78%, which is a forward price of $992, One tick = $12.50 = 1/2 basis point change in the yield. The contract is cash-settled. To speculate, go long T-bill futures if you think that 3-month T- bill prices will rise (yields on 3-month T-bills will fall). Sell T-bill futures to bet on falling prices (rising yields).

©David Dubofsky and 10-5 Thomas W. Miller, Jr. T-bill Futures Pricing, I. Cash and carry arbitrage: borrow (until delivery), buy the T-bill that will have 3 months to maturity on the delivery date, and sell the futures contract. Reverse cash and carry arbitrage: buy the cheap futures contract, sell short the deliverable T-bill (borrow), and lend the proceeds until delivery. Remember that the deliverable T-bill will have 3 months to maturity on the delivery day of the futures contract. If there are t1 days until delivery, then today, the deliverable T-bill has t1+91 days to maturity. (BTW, The same arbitrage concepts hold for Eurodollar futures.)

©David Dubofsky and 10-6 Thomas W. Miller, Jr. T-bill Futures Pricing, II. Buying T-bill futures = agreement to lend money to the US government in the future. Sell T-bill futures = agreement to borrow in the future. Refer to Section 5.3. You can create forward borrowing and lending situations by using spot pure discount debt instruments, such as T-bills. The two forward rates should be equal, or else there will be an opportunity to arbitrage. (BTW, The same concepts hold for Eurodollar futures.)

©David Dubofsky and 10-7 Thomas W. Miller, Jr. Eurodollar Futures, I. When foreign banks receive dollar deposits, those dollars are called Eurodollars. Underlying asset is the 90-day $1,000,000 Eurodollar time deposit interest rate; LIBOR Cash settled IMM Index = 100 – aoy aoy = add on yield on a 90-day forward Eurodollar time deposit (LIBOR). If the IMM Index is 95.19, then the futures LIBOR is 4.81%. (100 – = 4.81) LIBOR rises => IMM index falls. (A surprisingly difficult formula!)

©David Dubofsky and 10-8 Thomas W. Miller, Jr. Eurodollar Futures, II. 1 tick = 0.5 basis point in 3-month futures LIBOR = $12.50 (0.25 basis point = $6.25 for the spot month contract). To speculate that LIBOR will rise, sell Eurodollar futures (declining prices of debt instruments mean rising interest rates). To profit if short term interest rates fall, buy Eurodollar futures. Four months prior to the delivery date, a Eurodollar futures contract is ~ to a 4X7 FRA. 12 months prior to delivery a Eurodollar futures contract ~ 12X15 FRA.

©David Dubofsky and 10-9 Thomas W. Miller, Jr. Eurodollar Futures, III. Through the first six months of 2002, CME 3-month Eurodollar futures were the 2 nd most actively traded futures contract in the world, with over 106 million contracts traded. This great success is attributable to: –The size of the spot Eurodollar market is enormous, estimated to be in the $trillions. –Buyers and sellers of money market instruments that possess a default risk premium find that Eurodollar futures yields are more highly correlated with yields on their spot securities than T-bill yields. –Eurodollar futures are effective at hedging short-term interest rate exposure.

©David Dubofsky and Thomas W. Miller, Jr. Hedging With Eurodollar Futures If a firm holds a spot position that will experience losses if short-term interest rates rise (prices of debt instruments fall), then this short hedger will sell short-term interest rate futures contracts. If an individual holds a cash position that will experience losses when short term interest rates fall, then this long hedger will buy short-term interest rate futures contracts. Thus, the hedger must first identify whether higher or lower interest rates are feared. Then the proper futures contract(s) to trade must be determined. Finally, the "proper" number of futures contracts to be bought or sold (the hedge ratio) must be determined.

©David Dubofsky and Thomas W. Miller, Jr. Eurodollar: Futures Settlement Prices as of 07/28/99

©David Dubofsky and Thomas W. Miller, Jr. Locking in a Single-Period Borrowing Rate Using Eurodollar Futures On July 28, 1999, a firm plans to borrow $50 million for 90 days, beginning on September 13, The firm will borrow at the Eurodollar spot market on September 13 th. (For ease of presentation, the loan begins on the expiration date of the September futures contract, September 13, Loans beginning on any other date will mean that the hedge possesses some basis risk.) The current spot 3-month Eurodollar rate is %. However, this rate does not matter to the firm because the bank will not be borrowing at the current spot 3-month rate. timelinetimelinetimelinetimelinetimelinetimelinetimelinetimeline. Subliminal Hint

©David Dubofsky and Thomas W. Miller, Jr. The firm will be borrowing in the spot market 47 days hence. Thus, on July 28 th, the interest rate at which the firm will be borrowing on September 13 th is unknown. The firm fears that when it comes time to borrow the funds in the Eurodollar spot market, interest rates will be higher (Eurodollar Index will be lower). Such a situation calls for a short hedge using Eurodollar futures contracts. (Why does it call for a short hedge?) On July 28, 1999, the closing price for September Eurodollar futures was (IMM Index) Assuming transactions costs of zero, by shorting 50 Eurodollar futures contracts on July 28, 1999, the firm can lock in a 90-day borrowing rate of 5.445%. Rate: 100 –

©David Dubofsky and Thomas W. Miller, Jr. Case I. Spot 90-Day LIBOR on September 13 th is 5.445%. The firm’s interest expense would be: $680,625 = 50,000,000 * * (90/360) Because September 13 th is the settlement date for the Eurodollar futures contract, the futures price will equal the spot price, the 90-day LIBOR rate. (Why?) Thus, in this case, there is no profit or loss on the futures contracts because the firm went short at

©David Dubofsky and Thomas W. Miller, Jr. Case II. Spot 90-Day LIBOR on September 13 th is 5.845%. Here, the bank’s actual interest expense would be higher than “anticipated” because interest rates rose above the original futures interest rate: $730,625 = 50,000,000 * * (90/360) To calculate the futures profit on the 50 contracts, one must recall that each full point move in the IMM Index (i.e., 100 basis points) represents $2,500 for one futures contract. The delivery day futures price is = Thus, ( – ) * 2500 * 50 = $50,000 Here too, the net interest expense for the firm is $730,625 - $50,000 = $680,625.

©David Dubofsky and Thomas W. Miller, Jr. Case III. Spot 90-Day LIBOR on September 13 th is 5.045%. The bank’s actual interest expense would be: $630,625 = 50,000,000 * * (90/360) However, because interest rates are lower, the bank loses on its short futures position. The delivery day futures price is = The futures loss is ( – ) * 2500 * 50 = ($50,000) The net interest expense for the firm equals the interest expense with the 5.045% rate, plus the loss on the futures position. It is the same as the two previous cases: $630,625 + $50,000 = $680,625.

©David Dubofsky and Thomas W. Miller, Jr. An Important Note on Basis Risk It is important to note that the firm has removed basis risk from these transactions because the loan commenced on the futures expiration date. This example shows that no matter what the spot rate is in 47 days, the firm can protect itself from higher rates. Note that part of the cost of this protection is the foregone opportunity to make more money if rates fall.

©David Dubofsky and Thomas W. Miller, Jr. Locking in a Multi-Period Borrowing Rate Using Eurodollar Futures: A Strip Hedge Now suppose that on July 28, 1999, the firm plans to borrow $50 million for one year, beginning on September 13, The firm plans to borrow in the spot Eurodollar market. If the firm chooses to borrow quarterly, the firm would likely use a portfolio of 90-day Eurodollar futures contracts to hedge this borrowing cost, and it has two basic choices in the way it could hedge against increases in quarterly borrowing rates. They are a strip hedge and a stack hedge (frequently called a rolling hedge). To execute a strip hedge, the bank would sell 200 Eurodollar futures contracts: 50 in each of four different delivery months. (To execute a stack hedge, the bank would initially sell 200 futures contracts in one delivery month.) We will focus on an example of a strip hedge.

©David Dubofsky and Thomas W. Miller, Jr. Because the firm will borrow $50 million in September and every 90 days three times thereafter, the firm initiates a strip hedge by selling 50 Eurodollar futures contracts in each of four delivery months: September, December, March, and June. The short positions in these 200 futures contracts are all entered on July 28 th. Thus, a strip hedge can be thought of as a portfolio of single- period hedges. In the strip hedge shown below, the hedger has hedged borrowing costs for four successive quarters. In the following table, rates and prices that are known on July 28 th appear in bold italics. In this example, note that the firm faces a new loan rate at the start of each of four successive 90-day loan periods. As an example of how to read the table, means go short 50 contracts at a futures price of , and 94.35” means go long 50 contracts at a futures price of

©David Dubofsky and Thomas W. Miller, Jr. Strip Hedge Using Eurodollar Futures Spot 3-mo. Date LIBORSept Dec March 2000June /28/ /13/ /13/ % 3/13/ % 6/19/ % Futures LIBOR rate: 5.445% 5.81% 5.815% 6.05% (on 7/28/99) Gain (Loss) in Euro$ Futures: $25,625 $5,000 $23,125 ($18,750) * * The $18,750 loss occurs because the June 2000 futures price rose from to This is a loss of 15 ticks. Each tick is worth $25. The firm sold 50 futures contracts. Therefore, 15 ticks * $25/tick * 50 contracts = -$18,750.

©David Dubofsky and Thomas W. Miller, Jr. Results of Strip Hedge:

©David Dubofsky and Thomas W. Miller, Jr. Strip Hedge Summary and Introduction to Bundles and Packs The effective borrowing rate for each quarter is the implied futures rate at the time the hedge is placed. This can be assured only if the firm borrows on each of the futures contracts’ delivery days. This is just as it is in the one-period case above. Thus, one can see that a strip hedge is a portfolio of one-period hedges. To expedite the execution of strip trades the CME offers bundles and packs for Eurodollar futures. Bundles and Packs are simply "pre-packaged" series of contracts that facilitate the rapid execution of strip positions in a single transaction rather than constructing the positions with individual contracts.

©David Dubofsky and Thomas W. Miller, Jr. Eurodollar Bundles and Packs Bundles: The simultaneous sale or purchase of one each of a consecutive series of Eurodollar contracts. –There are 1,2,3,5,7, and 10-year Eurodollar Bundles available for trading. –For example, a two-year bundle consists of the first eight Eurodollar contracts. –A five-year "forward" bundle, which is composed of the twenty Eurodollar contracts from years six through ten, is also listed. Packs: A simultaneous purchase or sale of an equally weighted, consecutive series of Eurodollar futures. The number of contracts in a pack is fixed at four. –Packs are designated by a color code that corresponds to their position on the yield curve. For example, the red pack consists of the four contracts that constitute year two on the curve, the green pack those in year three, etc. There are nine Eurodollar packs (covering years two through ten) available for trading at a given time. –Distant Contract Liquidity makes identification impossible. –CME color codes: Years one (contracts 1-4) through ten (contracts 37-40) are represented, respectively, by: white, red, green, blue, gold, purple, orange, pink, silver, and copper.

©David Dubofsky and Thomas W. Miller, Jr. Some Extra Slides on this Material Note: In some chapters, we try to include some extra slides in an effort to allow for a deeper (or different) treatment of the material in the chapter. If you have created some slides that you would like to share with the community of educators that use our book, please send them to us!

©David Dubofsky and Thomas W. Miller, Jr. We Will Begin with a Review of Some Interest Rate Basics In Particular, we need to internalize two sets of interest rates. The Zeros. The Forwards. Hint: There is a relationship between them, that is best seen via a timeline.

©David Dubofsky and Thomas W. Miller, Jr. Out of Many Interest Rates, one is Named the Zero Rate. (Collectively, the Group of Zero Rates are Called ‘the Zeros’.) A zero rate from time 0 to maturity T, is the rate of interest earned on an investment that provides a payoff only at time T. (think of a zero- coupon bond). Because these rates are quoted today, i.e., at time 0, they are also known as spot rates. Although sometimes we must calculate these, zeros are not mythical creatures. Treasury STRIPS.

©David Dubofsky and Thomas W. Miller, Jr. Example

©David Dubofsky and Thomas W. Miller, Jr. Zero Curve

©David Dubofsky and Thomas W. Miller, Jr. Out of Many Rates, one is Named the Forward Rate. (Collectively, they are ‘the Forwards’.) The forward rate is the future zero rate implied by today’s term structure of zero interest rates. Expectations Theory of the Term Structure: forward rates equal expected future zero rates.

©David Dubofsky and Thomas W. Miller, Jr. Calculating Forward Rates Zero Rate forForward Rate an n -year Investmentfor n th Year Year ( n )(% per annum)

©David Dubofsky and Thomas W. Miller, Jr. A Handy Formula for Forward Rates: Suppose that the zero rates for time periods T 1 and T 2 are R 1 and R 2 with both rates continuously compounded. The forward rate for the period between times T 1 and T 2 is:

©David Dubofsky and Thomas W. Miller, Jr. Example: Calculating a Forward Rate, I. T: % f 1,2 % 10.5% f 2,3 % 10.8%

©David Dubofsky and Thomas W. Miller, Jr. Example: Calculating Forward Rate, II.

©David Dubofsky and Thomas W. Miller, Jr. Example of Calculating the Forward Rate with Periodic Interest Rates With Annual Rates:

©David Dubofsky and Thomas W. Miller, Jr. Short Hedge Situations Using Eurodollar Futures A manager of a portfolio consisting of short-term debt securities fears that a rise in short term interest rates will cause the value of the portfolio to decline. A bank makes a one year fixed rate loan, and funds it with 90 day negotiable CD's. After 90 days, the bank will have to return to the credit market to borrow for another 90 days. It fears interest rates will be higher at that date. A bank plans to issue CD's, or a corporation plans to sell commercial paper (or take out any short term loan) in the near future. An individual buys a house, but the bank will not guarantee his mortgage rate until the loan is approved, which will be in six weeks. His loan rate is tied to a short-term Treasury security index. An institution plans on selling a part of its investment portfolio of money market investments to meet an upcoming cash requirement. A government securities dealer who is carrying an inventory of T-bills fears that a rise in interest rates will lower its value. A firm has an existing variable rate loan, and next week, the interest rate will be reset.

©David Dubofsky and Thomas W. Miller, Jr. Long Hedge Situations Using Eurodollar Futures A bank or firm wishes to purchase six month CD's as an investment, but either there is a temporary insufficient supply of these securities, or the bank or firm temporarily lacks the cash needed to make the purchase. A portfolio manager knows that $X million will be received at the end of this month for investment in short-term securities. Current yields are very attractive, and the manager fears interest rates will fall between today and the day that the funds will be received. A bank makes a variable rate loan that is financed with a longer term CD.