Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3.

Slides:



Advertisements
Similar presentations
One liquid, two glasses. The anomalous dynamics in short ranged attractive colloids Francesco Sciortino Titolo.
Advertisements

Slow anomalous dynamics close to MCT higher order singularities. A numerical study of short-range attractive colloids. (and some additional comments) Francesco.
Gelation Routes in Colloidal Systems Emanuela Zaccarelli Dipartimento di Fisica & SOFT Complex Dynamics in Structured Systems Università La Sapienza, Roma.
COSIRES2004 MD Simulation of Surface Smoothing due to Cluster Impact: Estimation of Radiation Damage T.Muramoto, K.Itabasi and Y.Yamamura Okayama University.
Biological fluid mechanics at the micro‐ and nanoscale Lecture 7: Atomistic Modelling Classical Molecular Dynamics Simulations of Driven Systems Anne Tanguy.
Transfer FAS UAS SAINT-PETERSBURG STATE UNIVERSITY COMPUTATIONAL PHYSICS Introduction Physical basis Molecular dynamics Temperature and thermostat Numerical.
Computer simulations of amphiphilic worms and bi-layers.
Genova, September Routes to Colloidal Gel Formation CCP2004 In collaboration with S. Bulderyev, E. La Nave, A. Moreno, S. Mossa, I. Saika-Voivod,
Konstanz, September 2002 Potential Energy Landscape Equation of State Emilia La Nave, Francesco Sciortino, Piero Tartaglia (Roma) Stefano Mossa (Boston/Paris)
Aging in short-ranged attractive colloids G. Foffi INFM, Universita’ “La Sapienza”, Roma.
1 Relaxation and Transport in Glass-Forming Liquids Motivation (longish) Democratic motion Conclusions G. Appignanesi, J.A. Rodríguez Fries, R.A. Montani.
Free volume theory (Entropic) Adam & Gibbs theory Mode-coupling theory (old and new) theories on the GLASS TRANSITION a) “Old” theories (but still being.
1 Ghiath MONNET EDF - R&D Dep. Materials and Mechanics of Components, Moret-sur-Loing, France Bridging atomic to mesoscopic scale: multiscale simulation.
March ACS Chicago Francesco Sciortino Universita’ di Roma La Sapienza Gel-forming patchy colloids, and network glass formers: Thermodynamic and.
The Marie Curie Research/Training Network on Dynamical Arrest Workshop Le Mans, November 19-22, 2005 Slow dynamics in the presence of attractive patchy.
Cluster Phases, Gels and Yukawa Glasses in charged colloid-polymer mixtures. 6th Liquid Matter Conference In collaboration with S. Mossa, P. Tartaglia,
Duesseldorf Feb 2004 Duesseldorf February Potential Energy Landscape Description of Supercooled Liquids and Glasses Luca Angelani, Stefano Mossa,
Soft Matter Review 10 January Characteristics of Soft Matter (1)Length scales between atomic and macroscopic (sometimes called mesoscopic) (2) The.
Francesco Sciortino Universita’ di Roma La Sapienza October ISMC Aachen Patchy colloidal particles: the role of the valence in the formation of.
Density anomalies and fragile-to-strong dynamical crossover
Glass-Like Behavior in General Grain Boundary During Migration
Orleans July 2004 Potential Energy Landscape in Models for Liquids Networks in physics and biology In collaboration with E. La Nave, A. Moreno, I. Saika-Voivod,
Patchy Colloids, Proteins and Network Forming Liquids: Analogies and new insights from computer simulations Lyon - CECAM - June Dynamics in patchy.
R C Ball, Physics Theory Group and Centre for Complexity Science University of Warwick assoc. member Centre for Scientific Computing Incorporating Hydrodynamics.
Physical Gels and strong liquids 5th International Discussion Meeting on Relaxations in Complex Systems New results, Directions and Opportunities Francesco.
Universal Spin Transport in Strongly Interacting Fermi Gases Ariel Sommer Mark Ku, Giacomo Roati, Martin Zwierlein MIT INT Experimental Symposium May 19,
STATISTICAL PROPERTIES OF THE LANDSCAPE OF A SIMPLE STRONG LIQUID MODEL …. AND SOMETHING ELSE. E. La Nave, P. Tartaglia, E. Zaccarelli (Roma ) I. Saika-Voivod.
Simple Model of glass-formation Itamar Procaccia Institute of Theoretical Physics Chinese University of Hong Kong Weizmann Institute: Einat Aharonov, Eran.
Jamming Peter Olsson, Umeå University Stephen Teitel, University of Rochester Supported by: US Department of Energy Swedish High Performance Computing.
NEMATIC FLUCTUATIONS AS A PROBE OF THE PROPERTIES OF LIQUID CRYSTAL ELASTOMERS Martin Čopič Irena Drevenšek-Olenik Andrej Petelin Boštjan Zalar.
Physics of Food/Cooking Rama Bansil Objective: teach basic physics using food/cooking as the bait.
Goal: Understand Principles of Rheology: stress = f (deformation, time) NeoHookean: Newtonian: shear thinning (thickening) time dependent modulus G(t)
Liquid-Liquid Phase Transitions and Water-Like Anomalies in Liquids Erik Lascaris Final oral examination 9 July
V. Brosco1, R. Fazio2 , F. W. J. Hekking3, J. P. Pekola4
A computational study of shear banding in reversible associating polymers J. Billen, J. Stegen +, A.R.C. Baljon San Diego State University + Eindhoven.
Polymer Dynamic.
Molecular dynamic simulation of thermodynamic and mechanical properties and behavior of materials when dynamic loading V.V. Dremov, A.V. Karavaev, F.A.
Vibrational Relaxation of CH 2 ClI in Cold Argon Amber Jain Sibert Group 1.
T. Odagaki and T. Ekimoto Department of Physics, Kyushu University Ngai Fest September 16, 2006.
J. L. Bassani and V. Racherla Mechanical Engineering and Applied Mechanics V. Vitek and R. Groger Materials Science and Engineering University of Pennsylvania.
Critical Scaling of Jammed Systems Ning Xu Department of Physics, University of Science and Technology of China CAS Key Laboratory of Soft Matter Chemistry.
Marian Paluch Co-workers: Ż. Wojnarowska K. Grzybowska A. Grzybowski K. Kamiński K. Adrjanowicz P. Włodarczyk J. Pionteck (Christian-Albrechts University.
Dynamics of phase transitions in ion traps A. Retzker, A. Del Campo, M. Plenio, G. Morigi and G. De Chiara Quantum Engineering of States and Devices: Theory.
The Role of Friction and Shear stress in the Jamming Transition Antonio Coniglio Università di Napoli “Federico II” Lorentz Center Leiden 6-10 July 2009.
Phonon spectrum measured in a 1D Yukawa chain John Goree & Bin Liu.
How Mysterious is the Mysterious Glass Transition? Itamar Procaccia The Weizmann Institute of Science Weizmann Institute: Einat Aharonov, Eran Bouchbinder,
Molecular Dynamics Simulations of Compressional Metalloprotein Deformation Andrew Hung 1, Jianwei Zhao 2, Jason J. Davis 2, Mark S. P. Sansom 1 1 Department.
ON CONTINUOUS-TIME RANDOM WALKS IN FINANCE Enrico Scalas (1) with: Maurizio Mantelli (1) Marco Raberto (2) Rudolf Gorenflo (3) Francesco Mainardi (4) (1)
A computational study of shear banding in reversible associating polymers J. Billen +, J. Stegen *, A.R.C. Baljon + + Department of Physics, San Diego.
Effects of molecular weight distribution on the flow-enhanced crystallization of poly(1-butene) Stefano Acierno 1, Salvatore Coppola 2, Nino Grizzuti 3.
José S. Andrade Jr. Universidade Federal do Ceará Departamento de Física Flow and heat transport in irregular channels Collaborators: Ascânio Dias Araújo.
Generalized van der Waals Partition Function
Molecular dynamics (4) Treatment of long-range interactions Computing properties from simulation results.
Hybrid proto-neutron stars within a static approach. O. E. Nicotra Dipartimento di Fisica e Astronomia Università di Catania and INFN.
©D.D. Johnson and D. Ceperley MSE485/PHY466/CSE485 1 Scalar Properties, Static Correlations and Order Parameters What do we get out of a simulation?
Fluctuations and Pattern Formation in Fluids with Competing Interactions Congresso del Dipartimento di Fisica Highlights in Physics – 14 October.
Slow Relaxations in Complex Fluids: Origin and Nature of Dynamical Heterogeneities B. Chakraborty, Brandeis University, DMR Materials as diverse.
Electrostatic fluctuations at short scales in the solar-wind turbulent cascade. Francesco Valentini Dipartimento di Fisica and CNISM, Università della.
1 U N C L A S S I F I E D LANS Company Sensitive — unauthorized release or dissemination prohibited Operated by Los Alamos National Security, LLC for NNSA.
Lecture 29: 1st Law of Thermodynamics
1 Calculation of Radial Distribution Function (g(r)) by Molecular Dynamic.
1 Glass and Time – DNRF Centre for Viscous Liquid Dynamics, Roskilde University Strongly correlating liquids and their isomorphs - Simple liquids [van.
Non-local Transport of Strongly Coupled Plasmas Satoshi Hamaguchi, Tomoyasu Saigo, and August Wierling Department of Fundamental Energy Science, Kyoto.
1 Dynamical Processes in Glasses by Molecular Dynamics Simulations José Pedro Rino Universidade Federal de São Carlos, Departamento de Física
Tim Drews, Dan Finkenstadt, Xuemin Gu
Jamming at High Densities
Nonequilibrium statistical mechanics of electrons in a diode
DFT simulations of Li-ion conductor Li2(OH)Cl
From Microscopic to Mesoscopic Descriptions:
Polymer Dynamics and Rheology
Presentation transcript:

Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems Francesco Puosi 1, Dino Leporini 2,3 1 LIPHY, Université Joseph Fourier, Saint Martin d’Hères, France 2 Dipartimento di Fisica “Enrico Fermi”, Universita’ di Pisa, Pisa, Italia 3 IPCF/CNR, UoS Pisa, Italia

Debenedetti and Stillinger, 2001 Structural arrest 1/2 Random walk: cage effect Structural arrest and particle trapping in deeply supercooled states Log  (Poise)

Debenedetti and Stillinger, 2001 Structural arrest OUTLINE Cage scaling:  ,  vs. Debye-Waller factor 1/2 Structural arrest and particle trapping in deeply supercooled states Log  (Poise) Random walk: cage effect

Debenedetti and Stillinger, 2001 Structural arrest OUTLINE Cage scaling:  ,  vs. Debye-Waller factor Elastic scaling:  ,  vs. elastic modulus G -Elastic scaling and cage scaling: vs. G/T 1/2 Structural arrest and particle trapping in deeply supercooled states Log  (Poise) Random walk: cage effect

Debenedetti and Stillinger, 2001 Structural arrest OUTLINE Cage scaling:  ,  vs. Debye-Waller factor Elastic scaling:  ,  vs. elastic modulus G -Elastic scaling and cage scaling: vs. G/T Thermodynamic scaling:  ,  vs.   /T, (density  and temperature T ) -Thermodynamic scaling and cage scaling: vs.   /T 1/2 Structural arrest and particle trapping in deeply supercooled states Log  (Poise) Random walk: cage effect

Debenedetti and Stillinger, 2001 Structural arrest OUTLINE Cage scaling:  ,  vs. Debye-Waller factor Elastic scaling:  ,  vs. elastic modulus G -Elastic scaling and cage scaling: vs. G/T Thermodynamic scaling:  ,  vs.   /T, (density  and temperature T ) -Thermodynamic scaling and cage scaling: vs.   /T Conclusions 1/2 Structural arrest and particle trapping in deeply supercooled states Log  (Poise) Random walk: cage effect

=  (G/T ) =  (   /T )   = F[  (G/T )]   = F[  (   /T ) ]   = F[ ] Elastic scaling “universal” master curve Thermodynamic scaling material-dependent master curve 1/2 Cage scaling

  = F[ ] 1/2 Cage scaling …echoes the Lindemann melting criterion Hall & Wolynes 87, Buchenau & Zorn 92, Ngai 2000, Starr et al 2002, Harrowell et al 2006, Larini et al 2008…

Log t Log MSD Log Log t* F. Puosi, DL, JPCB (2011) Log   Cage scaling: evidence from the Van Hove function 1/2 MSD(t*) =

Log t Log MSD Log Log t* F. Puosi, DL, JPCB (2011) Log   Cage scaling: evidence from the Van Hove function G s (X) (r, t*) = G s (Y) (r, t*) G s (X) (r,   ) = G s (Y) (r,,   ) X, Y : generic states 1/2 MSD(t*) =

Log t Log MSD Log Log t* F. Puosi, DL, JPCB (2011) Log   Cage scaling: evidence from the Van Hove function Polymer melt G s (X) (r, t*) = G s (Y) (r, t*) G s (X) (r,   ) = G s (Y) (r,,   ) X, Y : generic states 1/2 MSD(t*) =

Log t Log MSD Log Log t* F. Puosi, DL, JPCB (2011) Log   Cage scaling: evidence from the Van Hove function Polymer melt G s (X) (r, t*) = G s (Y) (r, t*) G s (X) (r,   ) = G s (Y) (r,,   ) Jumps ! X, Y : generic states 1/2 MSD(t*) =

Log MSD Log F. Puosi, C. De Michele, DL, JCP 138, 12A532 (2013) Binary mixture Log t Log t* Log   Cage scaling: evidence from the Van Hove function G s (X) (r, t*) = G s (Y) (r, t*) G s (X) (r,   ) = G s (Y) (r,,   ) X, Y : generic states 1/2 MSD(t*) =

Log MSD Log Log t Log t* Log   Cage scaling: implications Polymer melt 1/2 t* MSD(t*) =

A. Ottochian, C. De Michele, DL, JCP (2009) Binary mixture, polymer melt Cage scaling: implications “rule of thumb 1” Log MSD Log Log t Log t* Log   1/2 MSD(t*) =

C. De Michele, E. Del Gado, DL, Soft Matter (2011) Cage scaling: implications “rule of thumb 1” Log MSD Log Log t Log t* Log   1/2 Colloidal gel MSD(t*) =

C. De Michele, DL, unpublishedF. Puosi, DL, JPCB (2011) Binary mixture Polymer melt Cage scaling: implications “rule of thumb 2” t

Cage scaling: experimental evidence L. Larini et al, Nature Phys. (2008) Master curve taken from MD simulation 1 adjustable parameter:  0 or  0

=  (G/T )   = F[  (G/T )]   = F[ ] Elastic scaling 1/2 Cage scaling Elastic models: see RMP review by Dyre (2006)

Log t G(t) G p = G(t*) Initial affine response, total force per particle unbalanced F.Puosi, DL, JCP (2012) Elastic scaling in polymer melts N.B.: MSD(t*) = Transient shear modulus

Log t G(t) G p = G(t*) “Inherent” dynamics: particle moved to the local potential energy minimum Initial affine response, total force per particle unbalanced Fast mechanical equilibration F.Puosi, DL, JCP (2012) Elastic scaling in polymer melts N.B.: MSD(t*) = Transient shear modulus

G(t) G∞G∞ GpGp t* ~ 1-10 ps Log t  Affine elasticity F.Puosi, DL, JCP (2012) Elastic scaling in polymer melts

G(t) G∞G∞ GpGp Log t  F.Puosi, DL, JCP (2012) Elastic scaling in polymer melts t* ~ 1-10 ps

Master curve: Log   =  +  G/T +  [ G/T ] 2 ,  constants Modulus term matters: evidence from one isothermal set Not another variant of the Vogel-Fulcher law   = f(T)… Elastic scaling in polymer melts No adjustments

1/ Elastic scaling: building the master curve MD simulations: polymer G/ T The elastic scaling works for the Debye-Waller factor, F.Puosi, DL, arXiv: v1, to be submitted

1/ MD simulations: polymer G/ T The elastic scaling works for the Debye-Waller factor, Elastic scaling: building the master curve F.Puosi, DL, arXiv: v1, to be submitted

1/   = F[ ] =  (G/T ) MD simulations: polymer G/ T   = F[  (G/T )] The elastic scaling works for the Debye-Waller factor, Elastic scaling: building the master curve F.Puosi, DL, arXiv: v1, to be submitted

  = F[  (G/T )] 1/ G/ T   = F[ ] =  (G/T ) Experiments G/T ( T g /G g ) The elastic scaling works for the Debye-Waller factor, the experimental master curve follows from the MD simulations Elastic scaling: building the master curve F.Puosi, DL, arXiv: v1, to be submitted

=  (   /T )   = F[  (   /T ) ]   = F[ ] Thermodynamic scaling 1/2 Cage scaling Thermodynamic scaling: see review by Roland et al, Rep. Prog. Phys. (2005)

Thermodynamic scaling in Kob-Andersen binary mixture F. Puosi, C. De Michele, DL, JCP 138, 12A532 (2013) The thermodynamic scaling works for the Debye-Waller factor,   /T

Thermodynamic scaling in Kob-Andersen binary mixture   /T F. Puosi, C. De Michele, DL, JCP 138, 12A532 (2013) The thermodynamic scaling works for the Debye-Waller factor, Cage scaling fails for   < 1

Thermodynamic scaling in Kob-Andersen binary mixture   /T F. Puosi, C. De Michele, DL, JCP 138, 12A532 (2013) =  (   /T )   = F[  (   /T )]   = F[ ] Cage scaling fails for   < 1 The thermodynamic scaling works for the Debye-Waller factor,

propylen carbonate F. Puosi, O. Chulkin, S. Capaccioli, DL to be submitted The master curve of the thermodynamic scaling follows from the MD simulations with one adjustable parameter: the isochoric fragility Thermodynamic scaling from Debye-Waller factor: comparison with the experiment preliminary results

1/2 Conclusions Cage scaling (   vs ): -Results suggest that is a “universal” picosecond predictor of the  relaxation. -Tested on different MD models: polymers, binary atomic mixtures, colloidal gels… - The MD master curve fits (with one adjustable parameter) the scaling of the experimental data covering over ~ 18 decades in   drawn by glassformers in the fragility range 20 ≤ m ≤ 190.

1/2 Conclusions Cage scaling (   vs ): -Results suggest that is a “universal” picosecond predictor of the  relaxation. -Tested on different MD models: polymers, binary atomic mixtures, colloidal gels… - The MD master curve fits (with one adjustable parameter) the scaling of the experimental data covering over ~ 18 decades in   drawn by glassformers in the fragility range 20 ≤ m ≤ 190. Elastic scaling (   vs G/T): - Intermediate-time shear elasticity and are highly correlated. - MD master curve   vs G/T drawn by using the cage scaling. - The MD master curve fits (with one adjustable parameter) the scaling of the experimental data covering over ~ 18 decades in   drawn by glassformers in the fragility range 20 ≤ m ≤ 115.

1/2 Conclusions Cage scaling (   vs ): -Results suggest that is a “universal” picosecond predictor of the  relaxation. -Tested on different MD models: polymers, binary atomic mixtures, colloidal gels… - The MD master curve fits (with one adjustable parameter) the scaling of the experimental data covering over ~ 18 decades in   drawn by glassformers in the fragility range 20 ≤ m ≤ 190. Elastic scaling (   vs G/T): - Intermediate-time shear elasticity and are highly correlated. - MD master curve   vs G/T drawn by using the cage scaling. - The MD master curve fits (with one adjustable parameter) the scaling of the experimental data covering over ~ 18 decades in   drawn by glassformers in the fragility range 20 ≤ m ≤ 115. Thermodynamic scaling (   vs   /T ) - scales with   /T. Extensive MD simulations in progress - MD master curve   vs   /T drawn by using the cage scaling. - Good comparison with the experimental data on a single glassformer (13 decades in   ) by adjusting the isochoric fragility only. Work in progress…

Collaborators: C. De Michele, Ric TD Roma L. Larini, Ass. Prof.Rutgers University A. Ottochian, Postdoc ’Ecole Centrale Paris F. Puosi, Postdoc Univ. Grenoble 1 S. BerniniPhDPisa O. ChulkinPostdocOdessa M. BaruccoGraduatePisa Credits

1/ G/ T    / T

t* ~ 1-10 ps Log t Log   Log Log t* Log t Log F s (q max, t) 1/2

C. De Michele, F. Puosi, DL, unpublished F. Puosi, DL, JPCB (2011)

MD simulations Density  Temperature T Chain length M (polymer) Potential: p, q

10 17 s (eta’ dell’universo)    ~ s 1/2 First “universal” scaling: structural relaxation time   or viscosity  vs.Debye-Waller factor (rattling amplitude in the cage)

Log MSD Log Log t Log t* Log   Cage scaling: implications G s (X) (r, t*) = G s (Y) (r, t*) G s (X) (r,   ) = G s (Y) (r,,   ) Polymer melt