Beam Test and Detector R&D LCWT 09 November 2, 2009 Takeshi MATSUDA DESY/FLC & KEK/IPNS.

Slides:



Advertisements
Similar presentations
TIME 2005: TPC for the ILC 6 th Oct 2005 Matthias Enno Janssen, DESY 1 A Time Projection Chamber for the International Linear Collider R&D Studies Matthias.
Advertisements

R&D plan for ILC ( ILD) TPC in (LC TPC Collaboration) LCWA09 Tracker Session 02 October 2009 LC TPC Collaboration Takeshi MATSUDA DESY/FLC.
Amsterdam, March 31, 2003 P. Colas - European R&D for gaseous trackers 1 European gaseous tracking hardware HistoryHistory GEM and MicromegasGEM and Micromegas.
Beijing, August 18, 2004 P. Colas - Micromegas for HEP 1 Recent developments of Micromegas detectors for High Energy Physics Principle of operationPrinciple.
31 May 2007LCWS R&D Review - Overview1 WWS Calorimetry R&D Review: Overview of CALICE Paul Dauncey, Imperial College London On behalf of the CALICE Collaboration.
UTA, Jan. 9-11, 2003M. Ronan LC-TPC R&D1 LC-TPC R&D GEM, MicroMEGAS and MWPC techniquesGEM, MicroMEGAS and MWPC techniques Preliminary studiesPreliminary.
27 th May 2004Daniel Bowerman1 Dan Bowerman Imperial College 27 th May 2004 Status of the Calice Electromagnetic Calorimeter.
D. Peterson, Cornell Univ., “Round table” 23-Jan-2003 Cornell Linear Collider Detector Research Cornell Interests: The Cornell group proposes to contribute.
Andy White U.Texas at Arlington (for J.Yu, C.Han, J.Li, D.Jenkins, J.Smith, K.Parmer, A.Nozawa, V.Kaushik) 10/18/04 IEEE/NSS Digital Hadron Calorimetry.
David Attié Club ‘ILC Physics Case’ CEA Saclay June 23, 2013 ILD & SiD concepts and R&D.
Carleton University A. Bellerive, K. Boudjemline, R. Carnegie, A. Kochermin, J. Miyamoto, E. Neuheimer, E. Rollin & K. Sachs University of Montreal J.-P.
1 The ILD LoI IDAG Referees for ILD Benchmarking – J.A. Hewett, W.G. Li Tracking – R. Nickerson Calorimetry – D. Green MDI – T. Himmel.
IHEP, Bejing 9th ACFA ILC Physics and Detector Workshop & ILC GDE Meeting The preliminary results of MPGD-based TPC performance at KEK beam.
Gaseous Tracking (TPC) Summary LCWT09 Nov. 5, 2009 LAL, Orsay Takeshi MATSUDA DESY/FLC 1.
Development of Particle Flow Calorimetry José Repond Argonne National Laboratory DPF meeting, Providence, RI August 8 – 13, 2011.
Summary of Calorimetry/Muon Sessions Burak Bilki University of Iowa Argonne National Laboratory.
Gas Tracking Summary: Gas Tracking IWLC October 2010 Geneva Takeshi MATSUDA DESY/FLC and KEK/IPNS 1.
ILD Large Prototype TPC tests with Micromegas D. Attié, A. Bellerive, P. Colas, E. Delagnes, M. Dixit, I. Giamatoris, A. Giganon J.-P. Martin, M. Riallot,
SiD R&D on PFA and Calorimetry -> IDAG guidance. -> Present PFA situation. -> Developing a timeline for PFA development. -> Calorimetry aspects.
SiD Concept – R&D Needs Andy White U. Texas at Arlington SiD Concept Meeting LCWS06 Bangalore, India March 11, 2006.
Large prototype goals Endplate design P. Colas. General ideas We have to agree first on the goals to understand how to build the endplate We have to agree.
Astrophysics Detector Workshop – Nice – November 18 th, D. Attié, P. Colas, E. Delagnes, M. Dixit, M. Riallot, Y.-H. Shin, S.
EPS-HEP 2015, Vienna. 1 Test of MPGD modules with a large prototype Time Projection Chamber Deb Sankar Bhattacharya On behalf of.
TPC in ILD ILC/ECFA - Warsaw 11 June 2008 Jan Timmermans NIKHEF.
M. Chefdeville LAPP, Annecy, France. Introduction  Motivations for a Digital hadronic calorimeter Count hits instead of measuring energy deposits Reduce.
TPC PAD Optimization Yukihiro Kato (Kinki Univ.) 1.Motivation 2.Simple Monte Carlo simulation 3.PAD response 4.PAD response for two tracks 5.Summary &
Micromegas TPC Beam Test Result H.Kuroiwa (Hiroshima Univ.) Collaboration with Saclay, Orsay, Carlton, MPI, DESY, MSU, KEK, Tsukuba U, TUAT, Kogakuin U,
June 22, 2009 P. Colas - Analysis meeting 1 D. Attié, P. Colas, M. Dixit, Yun-Ha Shin (Carleton and Saclay) Analysis of Micromegas Large Prototype data.
SiD R&D tasks for the LOI - Subsystem R&D tasks - Summary of SiD R&D - Prioritization of R&D tasks -> Document for DoE/NSF ~Feb 2009 (Mainly based on Marty’s.
1 ILC Detector Activities in Japan Hitoshi Yamamoto Tohoku University IRFU Linear Collider Days, Sacley November 29, 2013.
29/09/2010 1Wenxin.Wang_EUDET annual workshop D. Attié, P. Colas, M. Dixit, M. Riallot, YunHa Shin, S. Turnbull, W. Wang and all the LC-TPC collaboration.
Positional and Angular Resolution of the CALICE Pre-Prototype ECAL Hakan Yilmaz.
IHEP, Beijing 9th ACFA ILC Physics and Detector Workshop & ILC GDE Meeting The preliminary results of MPGD-based TPC performance at KEK beam.
Takeshi Matsuda LC TPC Collaboration March 5, 2008 TPC Endcap Materials.
R&D by LCTPC collaboration Last week: DESY PRC review: Status report:
Plans for a Simulation Study of the Magnetic Field Requirements of the LC TPC February 2006, ILC TPC Analysis Jamboree, DESY Christian Hansen University.
TPC Studies at University of Victoria ALCPG meeting SLAC, January 2004 Dean Karlen University of Victoria / TRIUMF.
Wenxin Wang 105/04/2013. L: 4.7m  : 3.6m Design for an ILD TPC in progress: Each endplate: 80 modules with 8000 pads Spatial Resolution (in a B=3.5T.
ILC Calorimetry Test Beam Status Lei Xia ANL HEP.
5-9 June 2006Erika Garutti - CALOR CALICE scintillator HCAL commissioning experience and test beam program Erika Garutti On behalf of the CALICE.
Tracking in a TPC D. Karlen / U. Victoria & TRIUMF for the LCTPC collaboration.
(Some thoughts/reminders on) Calibration/alignment scenarios for ILD/ILC Jan Timmermans – NIKHEF Amsterdam 07 Sep 2014ILD meeting Oshu1.
On behalf of the LCTPC collaboration VCI13, February 12th, 2013 Large Prototype TPC using Micro-Pattern Gaseous Detectors  David Attié 
The Prototype Simulation of SDHCAL Ran.Han Gerald.Grenier Muriel.Donckt IPNL.
Astrophysics Detector Workshop – Nice – November 18 th, David Attié — on behalf of the LC-TPC Collaboration — Beam test of the.
Development of high resolution Micro-Pattern Gas Detectors (MPGD) with wide readout pads Madhu Dixit TRIUMF & Carleton University Saha Institute for Nuclear.
DHCAL Jan Blaha R&D is in framework of the CALICE collaboration CLIC08 Workshop CERN, 14 – 17 October 2008.
A. SarratILC TPC meeting, DESY, 15/02/06 Simulation Of a TPC For T2K Near Detector Using Geant 4 Antony Sarrat CEA Saclay, Dapnia.
1 TPC Large Prototype (LP) Beam Tests Jan Timmermans NIKHEF/DESY (for LCTPC Collaboration) ALCPG 2011, Eugene.
Thorsten Lux. Charged particles X-ray (UV) Photons Cathode Anode Amplification Provides: xy position Energy (z position) e- CsI coating 2 Gas (Mixture)
On behalf of the LCTPC collaboration -Uwe Renz- University of Freiburg Albert-Ludwigs- University Freiburg Physics Department.
Gaseous Tracker R&D ILC Detector Test Beam Workshop Fermi National Accelerator Laboratory January 17-19, Madhu Dixit Carleton University & TRIUMF.
Future Beam Test Plans of the Calorimeter Group Aug 学術創成会議 Satoru Uozumi (Shinshu) for the GLD calorimeter group We are planning to have two beam.
Vincent Boudry LLR, École polytechnique LCTW'09 Orsay 2-5 November 2009 Calorimetry Hot spots.
CALICE, Shinshu, March Update on Micromegas TB analysis Linear Collider group, LAPP, Annecy CALICE collaboration meeting 5-7 March 2012, Shinshu,
TPC for 4-th concept S.Popescu IFIN-HH, Bucharest.
SiD R&D Plan and Opportunities for New Collaborators
Large Prototype TPC using Micro-Pattern Gaseous Detectors
SiD Calorimeter R&D Collaboration
LC Test Beam Activities
P. Colas for the LC TPC collaboration
Potential Ion Gate using GEM: experiment and simulation
Micromegas module for ILC-TPC
Toward the final design of a TPC for the ILD detector
State-of-the-art in Hadronic Calorimetry for the Lepton Collider
Recents Analysis Results From Micromegas TPC
Why do we want a TPC? P. Colas, CEA Saclay
TPC Paul Colas Technical meeting, Lyon.
Why do we want a TPC? P. Colas, CEA Saclay
D. Attié, P. Colas, K. Fujii,T. Matsuda,
Presentation transcript:

Beam Test and Detector R&D LCWT 09 November 2, 2009 Takeshi MATSUDA DESY/FLC & KEK/IPNS

Apologies I am supposed not to discuss R&D’s themselves. But since I still do not know what I should talk. So I started with TPC R&D!

Detector R&D: Beam Test Goal of R&D: Goal of R&D: The detector with specifications given by Physics at ILC. Criteria well defined at each step of R&D. Need & goal of beam test: Test/Demonstratenew technology, new structure, new software. Confirm/validate speculation, simulation, theory Compare/select technologies, designs, software's. Performance test large scale prototype, combined test Calibration Starting from a simple case: TPC

4 1. High Momentum resolution: (a) δ(1/pt) ≦ 5 x 10-5  (b) ≧ 200 position measurements along each track with the point resolution of (c) σ rφ ~ < 100μm at 3-4T  from Wire TPC to MPGD TPC 2. High tracking efficiency down to low momentum in a high backgrounds at ILC for jet energy measurement. 3. Minimum material of trucker, in particular, for PFA (challenging!) 4. dE/dX TPC R&D: Simple Case Tracking efficiency w pair background (S. Aplin & F. Gaede) ttbar overlayed with 100BX of pair backgrounds Preliminary -> > 99%

Demonstration Phase From wire TPC to MPGD TPC: 1.Comparison of wire TPC and MPGD TPC: This stage we knew that the wire TPC has poor resolution due to ExB in high B  but comic ray test in 1,5T magnetic field and beam tests in 1T were dispensable. 2.Beam tests and the cosmic ray tests with many small TPCs prototypes to study stable operation and point resolution of MPGD TPC: learned a lot about the basic structure of MOGD TPC  GEM: signal spread in the induction gap, Micromegas: bulk structure, resistive anode readout etc. 3.A full analytic formula of the point resolution of MPGD TPC “born from a beam test” giving a guidline for the point resolution of ILC TPC. Some other issues (still remain even today!) 4.Search for the best gas for LC TPC 5.Ion feedback and gating- a simulation and (beam) tests.

Experiences for Stable Operation of MPGD TPC in Various Small Prototypes in LC TPC Collaboration There are more,, and d they are still in operation

7 (42MB) The fundamental process is known! TPC Gas: Gas physics No. of primary electrons Fluctuation of ionization Attachment Diffusion Drift velocity (Aging) Drift: Filed cage/Magnet E & B field Distortions (ExB) Gas amplification: MPGD MicroMEGAS or GEM Gain fluctuation Ion backflow Position measurement: Conductive pad Resistive anode pads Pixels Low noise electronics: Analog/digital

Spatial Resolution of MPGD TPC: Full Analytic Calculation K may be dependent of the amplification scheme. If K is small, then Neff can be close to 35. in the case of GEM, Neff seems to be

Position resolution: MaicroMEGAS MicroMEGAS : RMS (avalanche) on pads = 15μm -  need resistive anode Not sufficient resolution for normal pads MicroMEGAS with resistive anode: Pads of 2mm x 6mm B=5T Neff = around 24-25

Position Resolution: GEM TPC Analytic formula of position resolution GEM RMS (avalanche) on pads= 350μm (Adjustable) Neff around 20 for 1mm x 6mm pads If Neff < 20  No GEM TPC fro ILC!

11 Analog TPC: Immediate options if the current ILC schedule (1) Multi layer GEM + Narrow (1mm wide) pad readout: Defocusing by multilayer GEM Narrow (1mm) pads  Larger readout channels Effective No. of electrons (Neff): (2) MicroMEGAS + Resistive anode pad (2-3mm wide) Widening signal by resistive anode Wider pads  Less readout channels Neff: Digital TPC: (3) Ingrid-MicroMEGAS + Timepix: Digital TPC Digital  Free from the gas gain fluctuation More information from primary electrons and Thus better position resolution (to be demonstrated) (4) Multilayer GEM + Timepix: More an analog TPC? Need to improve the efficiency for primary electrons Options of MPGD for ILC TPC studies with small MPGD TPC Prototypes Based on the studies with small MPGD TPC Prototypes

TPC Large Prototype Beam Test

TPC Large Prototype Beam Test at DESY : Goals Study, in practice, design and fabrication of all components of MPGD TPC in larger scale; a field cage,endplate, detector modules, front-end electronics and field mapping of non uniform magnetic field. Study, in practice, design and fabrication of all components of MPGD TPC in larger scale; a field cage, an endplate, detector modules, front-end electronics and field mapping of non uniform magnetic field. Demonstrate full-volume trucking in non-uniform magnetic field, trying to provide a proof for the momentum resolution at LC TPC: R&D goal (1-a) Demonstrate full-volume trucking in non-uniform magnetic field, trying to provide a proof for the momentum resolution at LC TPC: R&D goal (1-a) Demonstrate dE/dX capability of MPGD TPC. Demonstrate dE/dX capability of MPGD TPC. Study effects of detector boundaries. Study effects of detector boundaries. Develop methods and software for (tracking,) alignment calibration, and corrections. Develop methods and software for (tracking,) alignment, calibration, and corrections. (Beijing tracker review, Jan 2007)

14 Two steps: (1) σ rφ : OK also at LP1 : Present status  MPGD TPC  Gas of low diffusion (high ωτ ): Ar:CF4:Isobutene ( T2K gas) (2) Momentum resolution: More difficult  Non uniformity of PCMAG magnetic field (in purpose  ILC)  Distortion of other sources: Field cage, endplate  Distortion due to ion feedback (Ion disks)  Tracking Software for the non uniform magnetic field (Urgent!) Measurement of Momentum Resolution LP But also, eventually comparison/selection of technologies

TPC Large Prototype Beam Test (LP2) from 2011 Current Plan 2010 Continue LP1 test at DESY 2010 Continue LP1 test at DESY 2011 LP2: Move to a high momentum hadron beam: 2011 LP2: Move to a high momentum hadron beam:  Limitation using electron beam to measure momentum.  Limitation using electron beam to measure momentum.  Options of magnet  Options of magnet Move the current PCMAG Find a proper high filed magnet accommodates current LP1 TPC (Solenoid preferable).  Build also a new field cage with a laser track calibration  With TPC “Advanced Endplate” (need resources!) 15

Momentum measurement : A standard high momentum hadron beam line: where? Liquid He supply & He gas recovery for PCMAG  Modify PCMAG with cryo- coolers Double track separation (Jet environment) In principle we may simulate the situation from single track parameters. Base line shift (proper tune of readout electronics and MPGD system) Ion issue -> simulation in the fisrt Bunch structure Back grounds and Ion disks  by a laser sauce Power pulsing and cooling (“Advanced endplate”)  Pad plane with readout electronics may be tested in lab. TPC Large Prototype Beam Test (LP2) Some issues Actually many things can be done in lab. Or by simulation based on the basic parameters checked also by beam tests.

Calorimeter R&D More technology options Many detector options:  CALICE PFA calorimeter: EM calorimeter CALICE Si-W ECAL CALICE Si-W ECAL SiD Si-W ECAL SiD Si-W ECAL CALICE Scintillator-W ECAL CALICE Scintillator-W ECAL CALICE MAPS Digital ECAL CALICE MAPS Digital ECAL PFA Calorimeter: HCAL PFA Calorimeter: HCAL CALICE Scintillator Analog HCAL (AHCAL) CALICE Scintillator Analog HCAL (AHCAL) CALICE RPC Digital HCAL (DHCAL) CALICE RPC Digital HCAL (DHCAL) CALICE MicroMegas DHCAL CALICE MicroMegas DHCAL CALICE GEM DHCAL CALICE GEM DHCAL CALICE RPC Semi-Digital HCAL (sDHCAL) CALICE RPC Semi-Digital HCAL (sDHCAL) Dream calorimeters Goals of beam Test: Establish technology: basic performance of calorimeter Tune the reconstruction algorithms Validate/tune Monte Carlo models Goals of R&D: Demonstrate feasibility of (Particle Flow Approach) calorimeter for ILC Well defined already? Do we need a proof for PFA?

(Lei Xia/ANL HEP Calorimeter R&D More technology options

Calorimeter: Large Module Test basically, or else?

PFA Calorimeter: How Do We Test It? Combined detector become very large.  The issue of Combined test Dieter Schla t er

Vertex R&D: Beam Test Characterization using infra-red laser and gamma-sources in laboratory yields very valuable information. But TB is useful for measurement of response to MIPs, spatial resolution, time structure, two-track resolution, Lorentz angle,... Also: don't forget psychology, collaboration building, etc. Marcel Vos, Carlos Marinas

Vertex/Si tracker R&D: Beam Test Test beam: S imple test beam EUDET telescope in high energy beams ? Bunch structure Needed to test pulsed power/readout scenarios. Needed to test pulsed power/readout scenarios. Can we find a (cheap) workaround? Magnet : “Jet environment” Combined test Silicon-TPC (DESY, EUDET MEMO ) Silicon-alignment system Full VTX-tracker slice (in magnetic field) VTX-Tracker-Calorimeter (Particle Flow TB) VTX-Tracker-Calorimeter (Particle Flow TB) Marcel Vos, Carlos Marinas

Duplicated Conclusion: Issues to be answered Test beam: Where? How long? Do we get support? Bunch structure: (a) Do we really need it?, (b) If so how and where? New Magnet : (a) Field? (b) Dipole or solenoid? (c) Which? “Jet environment” (a) Do we really need it? Combined test (a) Can we afford it? (b) what do we study? (c) How? Silicon-TPC (DESY, EUDET MEMO ) Silicon-alignment system Full VTX-tracker slice (in magnetic field) VTX-Tracker-Calorimeter (Particle Flow TB) : Issue of resource VTX-Tracker-Calorimeter (Particle Flow TB) : Issue of resource