Physics 207: Lecture 15, Pg 1 Physics 207, Lecture 15, Oct. 24 Agenda: Chapter 11, Finish, Chapter 13, Just Start Assignment: For Monday read Chapter 13.

Slides:



Advertisements
Similar presentations
Physics 207: Lecture 13, Pg 1 Lecture 13 Goals: Assignment: l HW6 due Wednesday, Feb. 11 l For Thursday: Read all of Chapter 11 Chapter 10 Chapter 10 
Advertisements

Work Done by a Constant Force
Which of the following is the best description of the dot product ? Dot Product.
ConcepTest 6.5a Kinetic Energy I
Chapter 6: Conservation of Energy
Kinetic energy. Energy Energy is usually defined as the capacity to do work. One type of energy is kinetic energy.
Physics 7C lecture 06 Work and Energy
Work, Energy, and Power Samar Hathout KDTH 101. Work is the transfer of energy through motion. In order for work to take place, a force must be exerted.
Physics 207: Lecture 15, Pg 1 Lecture 15 Goals: Chapter 11 Chapter 11  Employ the dot product  Employ conservative and non-conservative forces  Use.
Physics 151: Lecture 16, Pg 1 Physics 151: Lecture 16 Today’s Agenda l Today’s Topics: çConservation of mechanical energy çNonconservative forces and loss.
Physics 151: Lecture 15, Pg 1 Today’s Topics l Potential Energy, Ch. 8-1 l Conservative Forces, Ch. 8-2 l Conservation of mechanical energy Ch.8-4.
Physics 2011 Chapter 6: Work and Kinetic Energy. Work.
PHYSICS 231 INTRODUCTORY PHYSICS I
Physics 218, Lecture XI1 Physics 218 Lecture 11 Dr. David Toback.
Physics 218 Lecture 11 Dr. David Toback Physics 218, Lecture XI.
Physics 151: Lecture 12, Pg 1 Physics 151: Lecture 12 l Topics : ç( Text Ch ) »Work & Energy. »Work of a constant force. »Work of a non-constant.
Physics 207: Lecture 14, Pg 1 Lecture 14Goals: Assignment: l l HW6 due Tuesday Oct. 25 th l l For Monday: Read Ch. 11 Chapter 10 Chapter 10   Understand.
General Physics 1, Additional questions By/ T.A. Eleyan
1a. Positive and negative work
Physics 1501: Lecture 11, Pg 1 Physics 1501: Lecture 11 l Announcements çHW 04 will be due the following Friday (same week). çMidterm 1: Monday Oct. 3.
Bellringer 10/25 A 95 kg clock initially at rest on a horizontal floor requires a 650 N horizontal force to set it in motion. After the clock is in motion,
Kinetic Energy, Work, Power, and Potential Energy
Kinetic Energy, Work, Power, and Potential Energy
2/19/03Physics 103, Spring 2004, U. Wisconsin1 Physics 103: Lecture 9 Energy Conservation, Power Today’s lecture will cover Potential Energy Conservation.
Chapter 6.  Energy is “conserved” meaning it can not be created nor destroyed Can change form Can be transferred  Total energy does not change with.
Physics 1501: Lecture 12, Pg 1 Physics 1501: Lecture 12 l Announcements çHW 04 due this Friday. çMidterm 1: Monday Oct. 3 çPractice test on web çHW solutions.
Physics 201: Lecture 16, Pg 1 Lecture 16 Agenda: l Review for exam l Assignment: For Tuesday, Read chapter l M. Tobin’s office hours today are.
College Physics, 7th Edition
Copyright © 2010 Pearson Education, Inc. Chapter 7 Work and Kinetic Energy.
Physics 201: Lecture 13, Pg 1 Lecture 13 l Goals  Introduce concepts of Kinetic and Potential energy  Develop Energy diagrams  Relate Potential energy.
Potential Energy and Conservative Forces
Mechanics Work and Energy Chapter 6 Work  What is “work”?  Work is done when a force moves an object some distance  The force (or a component of the.
Energy m m Physics 2053 Lecture Notes Energy.
Physics 215 – Fall 2014Lecture Welcome back to Physics 215 Today’s agenda: More on momentum, collisions Kinetic and potential energy Potential energy.
Physics 203 College Physics I Fall 2012
Physics 215 – Fall 2014Lecture Welcome back to Physics 215 Today’s agenda: Work Non-conservative forces Power.
Conservative Forces: The forces is conservative if the work done by it on a particle that moves between two points depends only on these points and not.
Reading Quiz - Work & Energy
Work and Energy Work is the product of Force and displacement. The force needed to calculate Work is the force or component force in the direction of.
Physics 215 – Fall 2014Lecture Welcome back to Physics 215 Today’s agenda: More gravitational potential energy Potential energy of a spring Work-kinetic.
Work and Energy.
Physics 207: Lecture 10, Pg 1 Lecture 10 l Goals:  Exploit Newton’s 3 rd Law in problems with friction  Employ Newton’s Laws in 2D problems with circular.
Physics 1501: Lecture 14, Pg 1 Physics 1501: Lecture 14 Today’s Agenda l Midterm graded by next Monday (maybe …) l Homework #5: Due Friday Oct. 11:00.
Physics 111: Lecture 11, Pg 1 Physics 111: Lecture 11 Today’s Agenda l Review l Work done by variable force in 3-D ç Newton’s gravitational force l Conservative.
Chapters 7, 8 Energy. What is energy? Energy - is a fundamental, basic notion in physics Energy is a scalar, describing state of an object or a system.
Physics 207: Lecture 14, Pg 1 Lecture 14Goals: Assignment: l l HW6 due Wednesday, Mar. 11 l l For Tuesday: Read Chapter 12, Sections 1-3, 5 & 6 ” do not.
Work and Energy x Work and Energy 06.
Potential Energy and Conservation of Energy
A body experiences a change in energy when one or more forces do work on it. A body must move under the influence of a force or forces to say work was.
Physics 207: Lecture 15, Pg 1 Lecture 15 Goals: Chapter 11 (Work) Chapter 11 (Work)  Employ conservative and non-conservative forces  Relate force to.
Physics 207: Lecture 13, Pg 1 Lecture 13 Goals: Assignments: l HW5, due tomorrow l For Wednesday, Read all of Chapter 10 Chapter 9 Chapter 9  Employ.
 Work  Energy  Kinetic Energy  Potential Energy  Mechanical Energy  Conservation of Mechanical Energy.
Physics 207: Lecture 14, Pg 1 Lecture 14Goals: Assignment: l l HW7 due Wednesday, Mar. 10 l l For Tuesday: Read through Ch. 12, Sections 1-3, 5 & 6 ” Do.
Energy Notes Energy is one of the most important concepts in science. An object has energy if it can produce a change in itself or in its surroundings.
PHY 101: Lecture Work Done by a Constant Force
Physics 207: Lecture 10, Pg 1 Physics 207, Lecture 10, Oct. 9 Exams will be returned in your next discussion section Regrades: Write down, on a separate.
Physics 207: Lecture 15, Pg 1 Lecture 15 Goals: Chapter 10 Chapter 10  Employ conservation of energy principle Chapter 11 Chapter 11  Employ the dot.
Lecture 5Purdue University, Physics 2201 Lecture 05 Forces and Motion beyond 1 D Textbook Sections 3.7, 4.1 PHYSICS 220.
1a. Positive and negative work
Physics 1501: Lecture 13 Announcements HW 05: Friday next week
Work Done by a Constant Force
Work Done by a Constant Force
Employ conservative and non-conservative forces
Physics 207, Lecture 14, Oct. 20 Chapter 11
Physics 207, Lecture 15, Oct. 22 Goals: Chapter 11 Chapter 12
Employ conservative and non-conservative forces
Physics 207, Lecture 14, Oct. 22 Agenda: Finish Chapter 10, Chapter 11
Lecture 12 Goals Analyze situations with Work and a Constant Force
Lecture 14 Goals More Energy Transfer and Energy Conservation
Work and Energy 2/4/2019 SHOW WORK DONE BY A COMPRESSED SPRING
Presentation transcript:

Physics 207: Lecture 15, Pg 1 Physics 207, Lecture 15, Oct. 24 Agenda: Chapter 11, Finish, Chapter 13, Just Start Assignment: For Monday read Chapter 13 carefully (you may skip the parallel axis theorem and vector cross products) l MP Homework 7, Ch. 11, 5 problems, available today, Due Wednesday at 4 PM l MP Homework 6, Due tonight l Chapter 11:  Variable forces  Conservative vs. Non-conservative forces  Power  Work & Potential Energy Start Chapter 13  Rotation  Torque

Physics 207: Lecture 15, Pg 2 Lecture 15, Exercise 1 Work in the presence of friction and non-contact forces A. 2 B. 3 C. 4 A box is pulled up a rough (  > 0) incline by a rope-pulley- weight arrangement as shown below.  How many forces are doing work on the box ?  Of these which are positive and which are negative?  Use a Force Body Diagram  Compare force and path v

Physics 207: Lecture 15, Pg 3 Lecture 15, Exercise 1 Work in the presence of friction and non-contact forces A box is pulled up a rough (  > 0) incline by a rope-pulley-weight arrangement as shown below.  How many forces are doing work on the box ?  And which are positive and which are negative?  Use a Force Body Diagram (A) (A) 2 (B) (B) 3 is correct (C) (C) 4 v f mg N T

Physics 207: Lecture 15, Pg 4 Work and Varying Forces (1D) l Consider a varying force F(x) FxFx x xx Area = F x  x F is increasing F r Here W = F ·  r F becomes dW = F dx F  = 0° Start Finish Work is a scalar, the rub is that there is no time/position info on hand F xx

Physics 207: Lecture 15, Pg 5 xxxx vovo m toto F Example: Work Kinetic-Energy Theorem x How much will the spring compress (i.e.  x) to bring the object to a stop (i.e., v = 0 ) if the object is moving initially at a constant velocity (v o ) on frictionless surface as shown below ? spring compressed spring at an equilibrium position V=0 t m Notice that the spring force is opposite to the displacement. For the mass m, work is negative For the spring, work is positive

Physics 207: Lecture 15, Pg 6 Example: Work Kinetic-Energy Theorem x = x f - x i How much will the spring compress (i.e.  x = x f - x i ) to bring the object to a stop (i.e., v = 0 ) if the object is moving initially at a constant velocity (v o ) on frictionless surface as shown below ? xxxx vovo m toto F spring compressed spring at an equilibrium position V=0 t m

Physics 207: Lecture 15, Pg 7 Lecture 15, Example Work & Friction Two blocks having mass m 1 and m 2 where m 1 > m 2. They are sliding on a frictionless floor and have the same kinetic energy when they encounter a long rough stretch (i.e.  > 0) which slows them down to a stop. l Which one will go farther before stopping? l Hint: How much work does friction do on each block ? (A) (B) (C) (A) m 1 (B) m 2 (C) They will go the same distance m1m1 m2m2 v2v2 v1v1

Physics 207: Lecture 15, Pg 8 Lecture 15, Example Work & Friction W = F d = -  N d = -  mg d =  K = 0 – ½ mv 2 -  m 1 g d 1 = -  m 2 g d 2  d 1 / d 2 = m 2 / m 1 (A) (B) (C) (A) m 1 (B) m 2 (C) They will go the same distance m1m1 m2m2 v2v2 v1v1

Physics 207: Lecture 15, Pg 9 Work & Power: l Power is the rate at which work is done. Instantaneous Power: Average Power: l A person of mass 80.0 kg walks up to 3rd floor (12.0m). If he/she climbs in 20.0 sec what is the average power used. l P avg = F h / t = mgh / t = 80.0 x 9.80 x 12.0 / 20.0 W l P = 470. W Example 1 : Units (SI) are Watts (W): 1 W = 1 J / 1s

Physics 207: Lecture 15, Pg 10 Work & Power: l Two cars go up a hill, a Corvette and a ordinary Chevy Malibu. Both cars have the same mass. l Assuming identical friction, both engines do the same amount of work to get up the hill. l Are the cars essentially the same ? l NO. The Corvette can get up the hill quicker l It has a more powerful engine.

Physics 207: Lecture 15, Pg 11 Work & Power: l Instantaneous Power is, If force constant, W= F  x = F (v 0 t + ½ at 2 ) and P = dW/dt = F (v 0 + at)

Physics 207: Lecture 15, Pg 12 Lecture 15, Exercise 2 Work & Power A. Top B. Middle C. Bottom l Starting from rest, a car drives up a hill at constant acceleration and then suddenly stops at the top. The instantaneous power delivered by the engine during this drive looks like which of the following, Z3 time Power time

Physics 207: Lecture 15, Pg 13 Lecture 15, Exercise 2 Work & Power P = dW / dt & W = F d = (  mg cos  mg sin  d and d = ½ a t 2 (constant accelation) So W = F ½ a t 2  P = F a t = F v l (A) l (B) l (C) Z3 time Power time

Physics 207: Lecture 15, Pg 14 Lecture 15, Exercise 3 Power for Circular Motion A. 16 J/s B. 8 J/s C. 4 J/s D. 0 J/s v l I swing a sling shot over my head. The tension in the rope keeps the shot moving in a circle. How much power must be provided by me, through the rope tension, to keep the shot in circular motion ? Note that: Rope Length = 1m Shot Mass = 1 kg Angular frequency = 2 rad / sec

Physics 207: Lecture 15, Pg 15 Lecture 15, Exercise 3 Power for Circular Motion l Note that the string expends no power ( because it does no work). l By the work / kinetic energy theorem, work done equals change in kinetic energy. l K = 1/2 mv 2, thus since |v| doesn’t change, neither does K. l A force perpendicular to the direction of motion does not change speed, |v|, and so does no work. l Answer is (D) v T

Physics 207: Lecture 15, Pg 16 Non-conservative Forces : l If the work done does not depend on the path taken, the force involved is said to be conservative. l If the work done does depend on the path taken, the force involved is said to be non-conservative. l An example of a non-conservative force is friction: l Pushing a box across the floor, the amount of work that is done by friction depends on the path taken. Work done is proportional to the length of the path !

Physics 207: Lecture 15, Pg 17 A Non-Conservative Force, Friction Looking down on an air-hockey table with no air flowing (  > 0). l Now compare two paths in which the puck starts out with the same speed (K 1 = K 2 ). Path 2 Path 1

Physics 207: Lecture 15, Pg 18 A Non-Conservative Force Path 2 Path 1 Since path 2 distance >path 1 distance the puck will be traveling slower at the end of path 2. Work done by a non-conservative force irreversibly removes energy out of the “system”. Here W NC = E final - E initial < 0

Physics 207: Lecture 15, Pg 19 Potential Energy l What is “Potential Energy” ? It is a way of effecting energy transfer in a system so that it can be “recovered” (i.e. transferred out) at a later time or place. l Example: Throwing a ball up a height h above the ground. No Velocity at time 2 but  K = K f - K i = -½ m v 2 Velocity v up at time 1 Velocity v down at time 3 At times 1 and 3 the ball will have the same K and U

Physics 207: Lecture 15, Pg 20 Compare work with changes in potential energy l Consider the ball moving up to height h (from time 1 to time 2) l How does this relate to the potential energy? Work done by the Earth’s gravity on the ball) W = F   x = mg (y f -y i ) = -mg h  U = U f – U i = mg h - mg 0 = mg h  U = -W This is a general result for all conservative forces (path independent) h mg

Physics 207: Lecture 15, Pg 21 Lecture 15, Example Work Done by Gravity l An frictionless track is at an angle of 30° with respect to the horizontal. A cart (mass 1 kg) is released from rest. It slides 1 meter downwards along the track bounces and then slides upwards to its original position. l How much total work is done by gravity on the cart when it reaches its original position? (g = 10 m/s 2 ) 1 meter 30° (A) 5 J(B) 10 J(C) 20 J(D) 0 J h = 1 m sin 30° = 0.5 m

Physics 207: Lecture 15, Pg 22 Conservative Forces and Potential Energy l So we can also describe work and changes in potential energy (for conservative forces)  U = - W l Recalling W = F x  x l Combining these two,  U = - F x  x l Letting small quantities go to infinitesimals, dU = - F x dx l Or, F x = -dU / dx

Physics 207: Lecture 15, Pg 23 Examples of the U - F relationship l Remember the spring,  U(x) = ½ kx 2 l Calculate the derivative  F x = - dU / dx  F x = - d ( ½ kx 2 ) / dx  F x = - ½ k (2x)  F x = -k x

Physics 207: Lecture 15, Pg 24 Main concepts F r Work (W) of a constant force F acting through a displacement  r is: F rrr W = F  r = F  r cos  = F along path  r Work (net) Kinetic-Energy Theorem: Work-potential energy relationship: W = -  U Work done reflects change in system energy (  E sys, U, K & E th )

Physics 207: Lecture 15, Pg 25 Important Definitions l Conservative Forces - Forces for which the work done does not depend on the path taken, but only the initial and final position (no loss). l Potential Energy - describes the amount of work that can potentially be done by one object on another under the influence of a conservative force  W = -  U Only differences in potential energy matter.

Physics 207: Lecture 15, Pg 26 Lecture 15, Exercise 4 Work/Energy for Non-Conservative Forces A. 2.5 J B. 5.0 J C. 10. J D J E J F J 1 meter 30° l The air track is once again at an angle of 30° with respect to horizontal. The cart (with mass 1.0 kg) is released 1.0 meter from the bottom and hits the bumper at a speed, v 1. This time the vacuum/ air generator breaks half-way through and the air stops. The cart only bounces up half as high as where it started. l How much work did friction do on the cart ?(g=10 m/s 2 ) Notice the cart only bounces to a height of 0.25 m h = 1 m sin 30° = 0.5 m

Physics 207: Lecture 15, Pg 27 Lecture 15, Exercise 4 Work/Energy for Non-Conservative Forces l How much work did friction do on the cart ? (g=10 m/s 2 ) W = F  x is not easy to do… l Work done (W) is equal to the change in the energy of the system (just U and/or K). E final - E initial and is < 0. (E = U+K) Use W = U final - U init = mg ( h f - h i ) = - mg sin 30° 0.5 m W = -2.5 N m = -2.5 J or (D) 1 meter 30° (A) 2.5 J (B) 5 J (C) 10 J (D) –2.5 J (E) –5 J (F) –10 J hfhf hihi

Physics 207: Lecture 15, Pg 28 Physics 207, Lecture 15, Oct. 24 Agenda: Chapter 11, Finish Assignment: For Monday read Chapter 13 carefully (you may skip the parallel axis theorem and vector cross products) l MP Homework 7, Ch. 11, 5 problems, available today, Due Wednesday at 4 PM l MP Homework 6, Due tonight