Marco Cristani Teorie e Tecniche del Riconoscimento1 Teoria e Tecniche del Riconoscimento Estrazione delle feature: Bag of words Facoltà di Scienze MM. FF. NN. Università di Verona A.A
Part 1: Bag-of-words models by Li Fei-Fei (Princeton) VPR2007_tutorial_bag_of_words.ppt
Related works Early “bag of words” models: mostly texture recognition –Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003; Hierarchical Bayesian models for documents (pLSA, LDA, etc.) –Hoffman 1999; Blei, Ng & Jordan, 2004; Teh, Jordan, Beal & Blei, 2004 Object categorization –Csurka, Bray, Dance & Fan, 2004; Sivic, Russell, Efros, Freeman & Zisserman, 2005; Sudderth, Torralba, Freeman & Willsky, 2005; Natural scene categorization –Vogel & Schiele, 2004; Fei-Fei & Perona, 2005; Bosch, Zisserman & Munoz, 2006
Object Bag of ‘words’
Analogy to documents Of all the sensory impressions proceeding to the brain, the visual experiences are the dominant ones. Our perception of the world around us is based essentially on the messages that reach the brain from our eyes. For a long time it was thought that the retinal image was transmitted point by point to visual centers in the brain; the cerebral cortex was a movie screen, so to speak, upon which the image in the eye was projected. Through the discoveries of Hubel and Wiesel we now know that behind the origin of the visual perception in the brain there is a considerably more complicated course of events. By following the visual impulses along their path to the various cell layers of the optical cortex, Hubel and Wiesel have been able to demonstrate that the message about the image falling on the retina undergoes a step- wise analysis in a system of nerve cells stored in columns. In this system each cell has its specific function and is responsible for a specific detail in the pattern of the retinal image. sensory, brain, visual, perception, retinal, cerebral cortex, eye, cell, optical nerve, image Hubel, Wiesel China is forecasting a trade surplus of $90bn (£51bn) to $100bn this year, a threefold increase on 2004's $32bn. The Commerce Ministry said the surplus would be created by a predicted 30% jump in exports to $750bn, compared with a 18% rise in imports to $660bn. The figures are likely to further annoy the US, which has long argued that China's exports are unfairly helped by a deliberately undervalued yuan. Beijing agrees the surplus is too high, but says the yuan is only one factor. Bank of China governor Zhou Xiaochuan said the country also needed to do more to boost domestic demand so more goods stayed within the country. China increased the value of the yuan against the dollar by 2.1% in July and permitted it to trade within a narrow band, but the US wants the yuan to be allowed to trade freely. However, Beijing has made it clear that it will take its time and tread carefully before allowing the yuan to rise further in value. China, trade, surplus, commerce, exports, imports, US, yuan, bank, domestic, foreign, increase, trade, value
Looser definition –Independent features A clarification: definition of “BoW”
Looser definition –Independent features Stricter definition –Independent features –histogram representation
categorydecisionlearning feature detection & representation codewords dictionary image representation category models (and/or) classifiers recognition
feature detection & representation codewords dictionary image representationRepresentation
1.Feature detection and representation
Regular grid –Vogel & Schiele, 2003 –Fei-Fei & Perona, 2005
1.Feature detection and representation Regular grid –Vogel & Schiele, 2003 –Fei-Fei & Perona, 2005 Interest point detector –Csurka, et al –Fei-Fei & Perona, 2005 –Sivic, et al. 2005
1.Feature detection and representation Regular grid –Vogel & Schiele, 2003 –Fei-Fei & Perona, 2005 Interest point detector –Csurka, Bray, Dance & Fan, 2004 –Fei-Fei & Perona, 2005 –Sivic, Russell, Efros, Freeman & Zisserman, 2005 Other methods –Random sampling (Vidal-Naquet & Ullman, 2002) –Segmentation based patches (Barnard, Duygulu, Forsyth, de Freitas, Blei, Jordan, 2003)
1.Feature detection and representation Normalize patch Detect patches [Mikojaczyk and Schmid ’02] [Mata, Chum, Urban & Pajdla, ’02] [Sivic & Zisserman, ’03] Compute SIFT descriptor [Lowe’99] Slide credit: Josef Sivic
… 1.Feature detection and representation
2. Codewords dictionary formation …
Vector quantization … Slide credit: Josef Sivic
2. Codewords dictionary formation Fei-Fei et al. 2005
Image patch examples of codewords Sivic et al. 2005
3. Image representation ….. frequency codewords
feature detection & representation codewords dictionary image representationRepresentation
categorydecision codewords dictionary category models (and/or) classifiers Learning and Recognition
category models (and/or) classifiers Learning and Recognition 1. Generative method: - graphical models 2. Discriminative method: - SVM