The History of Astronomy Please pick up your assigned transmitter.

Slides:



Advertisements
Similar presentations
Early Astronomers Physics 113 Goderya Chapter(s): 4 Learning Outcomes:
Advertisements

Roger A. Freedman • William J. Kaufmann III
Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide.
Kepler’s laws.
From Aristotle to Newton
Gravitation and the Waltz of the Planets
Week 5 Day 1: Announcements. Comments on Mastering Astronomy.
The Origin of Modern Astronomy
Astronomy 101 Section 020 Lecture 4 Gravitation and the Waltz of the Planets John T. McGraw, Professor Laurel Ladwig, Planetarium Manager.
Kepler’s Laws of Planetary Motion
Chapter 4 Gravitation and the Waltz of the Planets.
Ancient Astronomy Neolithic Astronomy Stonehenge ~ 2800 – 1700 BCE.
History of Astronomy  Motions of the sky caused by and controlled by gods. Big Horn Medicine Wheel Temple at Caracol.
Do our planets move?.
Chapter 2 The Copernican Revolution. Units of Chapter Ancient Astronomy 2.2 The Geocentric Universe 2.3 The Heliocentric Model of the Solar System.
Gravitation and the Waltz of the Planets Chapter Four.
Models of the Solar System
How has the amount of daylight we are receiving changed over the last two weeks?
History of Astronomy. Stonehenge Dates from Stone Age (2800 B.C.) Construction spanned 17 centuries.
CHAPTER 2: Gravitation and the Waltz of the Planets.
Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide.
Gravity, Orbits & Tides.
Chapter 26.2: Observing the Solar System
The Origin of Modern Astronomy
Chapter 2 The Copernican Revolution. Units of Chapter Ancient Astronomy 2.2 The Geocentric Universe 2.3 The Heliocentric Model of the Solar System.
Chapter 2.
Newton’s Laws Physics 113 Goderya Chapter(s): 5 Learning Outcomes: All.
The History of Astronomy brought to you by: Mr. Youngberg.
The History of Astronomy. When did mankind first become interested in the science of astronomy? 1.With the advent of modern computer technology (mid-20.
Midterm 1 Review Please swipe your student ID for attendance tracking, and pick up your assigned transmitter.
History of Astronomy - Part II
Reminders Answering cell phones during class shaves a little off your grade each time. Answering cell phones during class shaves a little off your grade.
Gravitation and the Waltz of the Planets Kepler, Galileo and Newton.
History of Astronomy. Our Universe Earth is one of nine planets that orbit the sun The sun is one star in 100 billion stars that make up our galaxy- The.
Goals Explain how accurate observations led to Heliocentric model Explain retrograde motion Describe contributions of Copernicus, Tycho, Galileo, and.
The Origin of Modern Astronomy
Astronomy The Science that Studies The Universe Ancient Greeks To Isaac Newton.
Chapter 2 The Copernican Revolution. Units of Chapter Ancient Astronomy 2.2 The Geocentric Universe 2.3 The Heliocentric Model of the Solar System.
Chapter 3: Motion of Astronomical Bodies. A bit more on the Celestial Sphere and motions This works OK if we only consider the stars. What happens when.
© 2013 Pearson Education, Inc. Astronomy: A Beginner’s Guide to the Universe Seventh Edition © 2013 Pearson Education, Inc. Chapter 1 Lecture The Copernican.
Chapter 2 The Copernican Revolution. Chapter 2 Learning Objectives  Know the differences and similarities between the geocentric and heliocentric models.
THE UNIVERSE IS FULL OF MAGICAL THINGS PATIENTLY WATING FOR OUR WITS TO GROW SHARPER. - Eden Phillpotts-
CHAPTER 4 Gravitation and the Waltz of the Planets CHAPTER 4 Gravitation and the Waltz of the Planets.
EARTH & SPACE SCIENCE Chapter 27 Planets of the Solar System 27.2 Models of the Solar System.
Note that the following lectures include animations and PowerPoint effects such as fly-ins and transitions that require you to be in PowerPoint's Slide.
The Origin of Modern Astronomy Chapter 4. The sun, moon, and planets sweep out a beautiful and complex dance across the heavens. Previous chapters have.
Early Astronomy Chapter 22, Section 1.
Ch 22 Astronomy. Ancient Greeks 22.1 Early Astronomy  Astronomy is the science that studies the universe. It includes the observation and interpretation.
Developing the Science of Astronomy (Chapter 4). Student Learning Objectives Compare ancient and modern theories of the solar system Apply Kepler’s Laws.
The Origin of Modern Astronomy
A New Era of Science Mathematics as a tool for understanding physics.
How We Know Where They’re Going.  Geocentric Model  Earth is the center of the universe  Philosophy at the time leads to the idea of perfection and.
The “Geocentric Model” Aristotle vs. Aristarchus (3 rd century B.C.): Aristotle: Sun, Moon, Planets and Stars rotate around fixed Earth. Ancient Greek.
Lecture Outlines Astronomy Today 8th Edition Chaisson/McMillan © 2014 Pearson Education, Inc. Chapter 2.
CHAPTER 2: Gravitation and the Waltz of the Planets.
Astronomy- The Original Science
Ancient Astronomy Neolithic Astronomy Stonehenge ~ 2800 – 1700 BCE.
The Origin of Modern Astronomy Evidence of the Big Bang
The Origin of Modern Astronomy
Ancient History of Astronomy
Ancient Astronomy Neolithic Astronomy Stonehenge ~ 2800 – 1700 BCE.
Gravity & Tides.
The History of Astronomy
Ancient Astronomy Neolithic Astronomy Stonehenge ~ 2800 – 1700 BCE.
Introduction To Modern Astronomy II
The History of Astronomy
The Origin of Modern Astronomy
CHAPTER 27.2: Gravitation and the
The Origin of Modern Astronomy
Presentation transcript:

The History of Astronomy Please pick up your assigned transmitter.

When did mankind first become interested in the science of astronomy? 1.With the advent of modern computer technology (mid-20 th century) 2.With the development of the theory of relativity (early 20 th century) 3.With the invention of the telescope (~ A.D. 1600) 4.During the times of the ancient greeks (~ 400 – 300 B.C.) 5.In the stone and bronze ages (several thousand years B.C.)

The Roots of Astronomy Already in the stone and bronze ages, human cultures realized the cyclic nature of motions in the sky. Monuments dating back to ~ 3000 B.C. show alignments with astronomical significance. Those monuments were probably used as calendars or even to predict eclipses.

Stonehenge

Constructed 3000 – 1800 B.C. in Great Britain Alignments with locations of sunset, sunrise, moonset and moonrise at summer and winter solstices Probably used as calendar.

Other Examples around the World Big Horn Medicine Wheel (Wyoming)

Other Examples around the World Caracol (Mexico); Maya culture, approx. A.D. 1000

Why is it so difficult to find out about the state of astronomical knowledge of bronze-age civilizations? 1.Written documents from that time are in a language that we don’t understand. 2.There are no written documents documents from that time. 3.Different written documents about their astronomical knowledge often contradict each other. 4.Due to the Earth’s precession, they had a completely different view of the sky than we have today. 5.They didn’t have any astronomical knowledge at all.

Ancient Greek Astronomers Models were based on unproven “first principles”, believed to be “obvious” and were not questioned: 1. Geocentric “Universe”: The Earth is at the Center of the “Universe”. 2. “Perfect Heavens”: The motions of all celestial bodies can be described by motions involving objects of “perfect” shape, i.e., spheres or circles.

Ptolemy: Geocentric model, including epicycles 1. Imperfect, changeable Earth, 2. Perfect Heavens (described by spheres) Central guiding principles:

What were the epicycles in Ptolemy’s model supposed to explain? 1.The fact that planets are moving against the background of the stars. 2.The fact that the sun is moving against the background of the stars. 3.The fact that planets are moving eastward for a short amount of time, while they are usually moving westward. 4.The fact that planets are moving westward for a short amount of time, while they are usually moving eastward. 5.The fact that planets seem to remain stationary for substantial amounts of time.

Epicycles The ptolemaic system was considered the “standard model” of the Universe until the Copernican Revolution. Introduced to explain retrograde (westward) motion of planetsretrograde (westward) motion

At the time of Ptolemy, the introduction of epicycles was considered a very elegant idea because … 1.it explained the motion of the planets to the accuracy observable at the time. 2.it was consistent with the prevailing geocentric world view. 3.it explained the apparently irregular motion of the planets in the sky with “perfect” circles. 4.because it did not openly contradict the teaching of the previous authorities. 5.All of the above.

The Copernican Revolution Nicolaus Copernicus (1473 – 1543): Heliocentric Universe (Sun in the Center)

New (and correct) explanation for retrograde motion of the planets: This made Ptolemy’s epicycles unnecessary. Retrograde (westward) motion of a planet occurs when the Earth passes the planet. when the Earth passes the planet Described in Copernicus’ famous book “De Revolutionibus Orbium Coelestium” (“About the revolutions of celestial objects”)

In the Copernikan “Universe”, the orbits of planets and moons were … 1.Perfect Circles 2.Ellipses 3.Spirals 4.Epicycles 5.None of the above.

Johannes Kepler (1571 – 1630) Used the precise observational tables of Tycho Brahe (1546 – 1601) to study planetary motion mathematically. 1.Circular motion and Planets move around the sun on elliptical paths, with non-uniform velocities. Found a consistent description by abandoning both 2.Uniform motion.

Kepler’s Laws of Planetary Motion 1.The orbits of the planets are ellipses with the sun at one focus. c Eccentricity e = c/a

Eccentricities of Ellipses e = 0.02 e = 0.1e = 0.2 e = 0.4e = 0.6 1)2)3) 4) 5)

Eccentricities of planetary orbits Orbits of planets are virtually indistinguishable from circles: Earth: e = Most extreme example: Pluto: e = 0.248

2. A line from a planet to the sun sweeps over equal areas in equal intervals of time. Fast Slow Animation

Are all four seasons equally long? 1.Yes. 2.No, summer is the longest; winter is the shortest. 3.No, fall is the longest; spring is the shortest. 4.No, winter is the longest; summer is the shortest. 5.No, spring is the longest; fall is the shortest.

Why is the summer longer than winter? 1.Because of the precession of the Earth’s axis of rotation. 2.Because of the moon’s 5 o inclination with respect to the Ecliptic. 3.Because the Earth is rotating around its axis more slowly in the summer (→ longer days!). 4.Because the Earth is closest to the sun in January and most distant from the sun in July. 5.Because the Earth is closest to the sun in July and most distant from the sun in January.

Autumnal Equinox (beg. of fall) Winter solstice (beg. of winter) Summer solstice (beg. of summer) Vernal equinox (beg. of spring) January July Fall WinterSpring Summer

3.A planet’s orbital period (P) squared is proportional to its average distance from the sun (a) cubed: P y 2 = a AU 3 (P y = period in years; a AU = distance in AU) Kepler’s Third Law Orbital period P known → Calculate average distance to the sun, a: a AU = P y 2/3 Average distance to the sun, a, known → Calculate orbital period P. P y = a AU 3/2

It takes years for Saturn to orbit once around the sun. What is its average distance from the sun? AU AU AU AU AU

Think critically about Kepler’s Laws: Would you categorize his achievements as physics or mathematics? 1.Mathematics 2.Physics

Isaac Newton ( ) Major achievements: 1.Invented Calculus as a necessary tool to solve mathematical problems related to motion Adding physics interpretations to the mathematical descriptions of astronomy by Copernicus, Galileo and Kepler 2.Discovered the three laws of motion 3.Discovered the universal law of mutual gravitation

Newton’s Laws of Motion (I) 1.A body continues at rest or in uniform motion in a straight line unless acted upon by some net force. An astronaut floating in space will float forever in a straight line unless some external force is accelerating him/her.

Velocity and Acceleration Acceleration (a) is the change of a body’s velocity (v) with time (t): a =  v/  t Velocity and acceleration are directed quantities (vectors)! a v

Which of the following involve(s) a (non-zero) acceleration? 1.Increasing the speed of an object. 2.Braking. 3.Uniform motion on a circular path. 4.All of the above. 5.None of the above

Velocity and Acceleration Acceleration (a) is the change of a body’s velocity (v) with time (t): 1.Acceleration in the conventional sense (i.e. increasing speed) a =  v/  t Different cases of acceleration: Velocity and acceleration are directed quantities (vectors)! 3.Change of the direction of motion (e.g., in circular motion) 2.Deceleration (i.e. decreasing speed) a v

A ball attached to a string is in a circular motion as shown. Which path will the ball follow if the string breaks at the marked point? 1) 2) 3) 4) 5) Impossible to tell from the given information.

Newton’s Laws of Motion (II) 2.The acceleration a of a body is inversely proportional to its mass m, directly proportional to the net force F, and in the same direction as the net force. a = F/m  F = m a

Newton’s Laws of Motion (III) 3.To every action, there is an equal and opposite reaction. The same force that is accelerating the boy forward, is accelerating the skateboard backward.

The Universal Law of Gravity Any two bodies are attracting each other through gravitation, with a force proportional to the product of their masses and inversely proportional to the square of their distance: F = - G Mm r2r2 (G is the Universal constant of gravity.)

According to Newton’s universal law of gravity, the sun is attracting the Earth with a force of 3.6*10 22 N. What is the gravitational force that the Earth exerts on the sun? *10 18 N 3.3.6*10 22 N *10 29 N. 5.Depends on the relative speed of the Earth with respect to the sun.