Generation and Recombination in Organic Solar Cells

Slides:



Advertisements
Similar presentations
Excitons – Types, Energy Transfer
Advertisements

Rare-earth doped fluorides for silicon solar cell efficiency enhancement Diana Serrano Garcia A.Braud, P.Camy, J-L.Doualan, A.Benayad, V.Menard, R.Moncorge.
Nir Tessler Microelectronic & Nanoelectronic centers Electrical Enginnering Dept. Technion, Israel Institute of Technology Haifa, Israel
Budapest University of Technology and Economics Department of Electron Devices Microelectronics, BSc course Basic semiconductor physics.
Nanostructured self-assembled P3HT thin films and their application to enhance organic solar cell efficiency Varun Vohra 1,Hideyuki Murata 2 1 University.
P3HT:PCBM Possible way to home-use solar cell “foliage” Ge, Weihao.
The temperature dependence performance of ultraviolet radiation detectors T. V. Blank, Yu. A. Goldberg, O. V. Konstantinov Ioffe Physico-Technical Institute.
Influence of Acceptor Structure on Barriers to Charge Separation in Organic Photovoltaic Materials Ryan D. Pensack†, Changhe Guo‡, Kiarash Vakhshouri‡,
Wei E.I. Sha, Wallace C.H. Choy, and Weng Cho Chew
Are there ab initio methods to estimate the singlet exciton fraction in light emitting polymers ? William Barford The title of my talk is “What determines.
Report Speaker: C.A. Chen Teacher: G.S Liou Class: Special Topics on Polymers Synthesis.
Utilizing Carbon Nanotubes to Improve Efficiency of Organic Solar Cells ENMA 490 Spring 2006.
Semiconductor Physics - 1Copyright © by John Wiley & Sons 2003 Review of Basic Semiconductor Physics.
Coupled optoelectronic simulation of organic bulk-heterojunction solar cells: Parameter extraction and sensitivity analysis R. Häusermann,1,a E. Knapp,1.
Solar Cell Operation Key aim is to generate power by:
Organic Optoelectronics Nir Tessler EE Dept. Microelectronic Center & Nanoelectronic Center Technion.
Nanostructured Polymer Solar Cells
Department of Aeronautics and Astronautics NCKU Nano and MEMS Technology LAB. 1 Chapter I Introduction June 20, 2015June 20, 2015June 20, 2015.
Lecture #8 OUTLINE Generation and recombination Excess carrier concentrations Minority carrier lifetime Read: Section 3.3.
8. Optical processes in conjugated materials Full color display- Active matrix x 150 Pixels - 2 inch diagonal Cambridge Display Technology.
Fei Yu and Vikram Kuppa School of Energy, Environmental, Biological and Medical Engineering College of Engineering and Applied Science University of Cincinnati.
Photovoltaics: What material is best for your needs Benjamin Glassy Mark Ziffer 6/6/2013.
Current through electronic device. Dynamics of electronic carriers J = nev d = ne 2 F  /m* J =  F (lei de Ohm)  = ne 2  /m* = ne  v d =  F  =
Supervisors: Dr. Ghazi Dr. Izadifard
J.Vaitkus et al., WOEDAN Workshop, Vilnius, The steady and transient photoconductivity, and related phenomena in the neutron irradiated Si.
Fig 2a: Illustration of macroscopic defects Diffusion lengths are calculated by the equation where μ is the mobility of electron with literature value.
Nathan Duderstadt, Chemical Engineering, University of Cincinnati Stoney Sutton, Electrical Engineering, University of Cincinnati Kate Yoshino, Engineering.
Solar Cells, Sluggish Capacitance, and a Puzzling Observation Tim Gfroerer Davidson College, Davidson, NC with Mark Wanlass National Renewable Energy Lab,
Institute of Materials Research and Engineering 3 Research Link, Singapore Website: Tel:
References Hans Kuzmany : Solid State Spectroscopy (Springer) Chap 5 S.M. Sze: Physics of semiconductor devices (Wiley) Chap 13 PHOTODETECTORS Detection.
VFET – A Transistor Structure for Amorphous semiconductors Michael Greenman, Ariel Ben-Sasson, Nir Tessler Sara and Moshe Zisapel Nano-Electronic Center,
THE OPTIMUM PERFORMANCE OF POLYMER SOLAR CELLS By, N. Ibrahim2 M. O. Sid-Ahmed1 1 Sudan University of Science and Technology, Faculty of Science, Physics.
Page 1 Band Edge Electroluminescence from N + -Implanted Bulk ZnO Hung-Ta Wang 1, Fan Ren 1, Byoung S. Kang 1, Jau-Jiun Chen 1, Travis Anderson 1, Soohwan.
Ch.4: Polymer Solar Cells: Photoinduced Charge Transfer ▪ Photoinduced Electron Transfer between Conjugated Polymer and Fullerene N. S. Sariciftci & A.
CEAS REU Project 4 Synthesis of Solar Cell Materials, and Fabrication of Novel Polymer-Based Solar Cells Nathan Duderstadt, Chemical Engineering, University.
Interplay of polarization fields and Auger recombination in the efficiency droop of nitride light-emitting diodes APPLIED PHYSICS LETTERS 101, (2012)
Basic Electronics By Asst Professor : Dhruba Shankar Ray For B.Sc. Electronics Ist Year 1.
NEEP 541 Ionization in Semiconductors - II Fall 2002 Jake Blanchard.
22 October 2009FCAL workshop, Geneve1 Polarization effects in the radiation damaged scCVD Diamond detectors Sergej Schuwalow, DESY Zeuthen On behalf of.
1 Optically Detected Magnetic Resonance (ODMR) and its Application to  -Conjugated Materials and Organic Light-Emitting Devices (OLEDs) Joseph Shinar.
Fullerene Derivatives Kirsten Parratt, Loo Lab, 11/9/2010
Barcelona, 31 May- 2 June Contacts to High-Resistivity Semiconductors Arie Ruzin School of EE, Faculty of Engineering, Tel Aviv University, Israel.
LBNL 9/15/06 Limiting factors in solar cell efficiency - how do they apply on the nano-scale ? D.G. Ast Cornell University.
Plasma diagnostics using spectroscopic techniques
Solid-State Electronics Chap. 6 Instructor: Pei-Wen Li Dept. of E. E. NCU 1 Chap 6. Nonequilibrium Excess Carriers in Semiconductor  Carrier Generation.
Organic semiconductors Solar Cells & Light Emitting Diodes Lior Tzabari, Dan Mendels, Nir Tessler Nanoelectronic center, EE Dept., Technion.
Reporter: Ting Lei Supervisor: Prof. Jian Pei Organic Solar Cells 2009/10/23 Mechanism and Design Strategies.
TCAD simulation of Si crystal with different clusters. Ernestas Zasinas, Rokas Bondzinskas, Juozas Vaitkus Vilnius University.
ECEE 302: Electronic Devices
Heterostructures & Optoelectronic Devices
Lecture 3 OUTLINE Semiconductor Fundamentals (cont’d) – Thermal equilibrium – Fermi-Dirac distribution Boltzmann approximation – Relationship between E.
Introduction to semiconductor technology. Outline –4 Excitation of semiconductors Optical absorption and excitation Luminescence Recombination Diffusion.
1 Stephen SchultzFiber Optics Fall 2005 Semiconductor Optical Detectors.
Photoluminescence and Photocurrent in a Blue LED Ben Stroup & Timothy Gfroerer, Davidson College, Davidson, NC Yong Zhang, University of North Carolina.
Charge Transport and Related Phenomena in Organic Devices Noam Rappaport, Yevgeni Preezant, Yehoram Bar, Yohai Roichman, Nir Tessler Microelectronic &
1 Quantum phosphors Observation of the photon cascade emission process for Pr 3+ - doped phosphors under vacuum ultraviolet (VUV) and X-ray excitation.
Lecture 14 OUTLINE pn Junction Diodes (cont’d)
Eletrophosphorescence from Organic Materials Excitons generated by charge recombination in organic LEDs Spin statistics says the ratio of singlet : triplet,
Photovoltaic effect and cell principles. 1. Light absorption in materials and excess carrier generation Photon energy h = hc/ (h is the Planck constant)
J.Vaitkus et al. PC spectra. CERN RD50 Workshop, Ljubljana, "Analysis of deep level system transformation by photoionization spectroscopy"
ECE 874: Physical Electronics Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University
Semiconductor Conductivity Ch. 1, S It is well-known that in semiconductors, there are Two charge carriers! Electrons  e - & Holes  e + What is a hole?
Boron and Phosphorus Implantation Induced Electrically Active Defects in p-type Silicon Jayantha Senawiratne 1,a, Jeffery S. Cites 1, James G. Couillard.
Bandgap (eV) Lattice Constant (Å) Wavelength ( ㎛ ) GaN AlN InN 6H-SiC ZnO AlP GaP AlAs.
Ideality Factor.
Lecture #8 OUTLINE Generation and recombination
Chapter 4 Excess Carriers in Semiconductors
MIT Amorphous Materials 10: Electrical and Transport Properties
Chapter – 12 Organic Light Emitting Diodes
Triplet Sensitization by Lead Halide Perovskite Thin Films for Efficient Solid-State Photon Upconversion at Subsolar Fluxes  Sarah Wieghold, Alexander.
Presentation transcript:

Generation and Recombination in Organic Solar Cells Lior Tzabari, Dan Mendels, Nir Tessler Nanoelectronic center, EE Dept., Technion

Outline Macroscopic View of recombination P3HT:PCBM - Exciton Annihilation as the bimolecular loss Generalized Einstein Relation (one page)

What about recombination in P3HT-PCBM Devices Let’s take a macroscopic look and decide on the relevant processes. What experimental technique would be best? Picture taken from: http://blog.disorderedmatter.eu/2008/06/05/picture-story-how-do-organic-solar-cells-function/ (Carsten Deibel)

Mobility Distribution Function or Spatially Dispersive Transport Different time-scales Different Populations (PV is a CW device ) N. Rappaport et. al., APL, 88, 252117, 2006 N. Rappaport et. al., JAP, 99, 064507, 2006 N. Rappaport, et. al., Phys. Rev. B 76 (23), 235323 (2007). L. S. C. Pingree, et.al., Nano Lett. 9 (8), 2946-2952 (2009).

Exciton recombination (Intra, Inter, “pairs”,…) QE as a function of excitation power (If Undoped) Only Loss Mechanism Is Exciton recombination (Intra, Inter, “pairs”,…) Free-Charge Generation Efficiency Other Losses Kick in HOMO Glass ITO PEDOT:PSS Ca Al Cell Efficiency Generating Power (mWcm-2) N. Tessler and N. Rappaport, JAP, vol. 96, pp. 1083-1087, 2004. N. Rappaport, et. al., JAP, vol. 98, p. 033714, 2005.

QE as a function of excitation power Langevin /Bimolecular loss Charge generation rate Photo-current Bimolecular recombination-current No re-injection Smaller Bimolecular Coefficient Signature of bi-molecular Loss N. Tessler and N. Rappaport, Journal of Applied Physics, vol. 96, pp. 1083-1087, 2004. N. Rappaport, et. al., Journal of Applied Physics, vol. 98, p. 033714, 2005.

QE as a function of excitation power SRH (trap assisted recombination) loss LUMO Bimolecular dEt Mid gap HOMO Monomol Doped  Traps already filled Intrinsic (traps are empty) Nt – Density of traps. dEt - Trap depth with respect to the mid-gap level. Cn- Capture coefficient L. Tzabari, and N. Tessler, Journal of Applied Physics 109, 064501 (2011)

QE as a function of excitation power SRH (trap assisted recombination) loss Fewer Traps LUMO Traps Mid gap Deeper Traps HOMO L. Tzabari, and N. Tessler, Journal of Applied Physics 109, 064501 (2011)

What can we learn using simple measurements (intensity dependence of the cell efficiency) Bi- Molecular SRH (trap assisted) L. Tzabari, and N. Tessler, Journal of Applied Physics 109, 064501 (2011)

Recombination in P3HT-PCBM 10 -2 2 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 4 min Anneal , - Experiment , - Model Intensity [mW/cm2] Normalized QE 4min 1.5e-12 Kb[cm3/sec] Kb – Langevin bimolecular recombination coefficient In practice detach it from its physical origin and use it as an independent fitting parameter צריך קבוע יותר גדול – הגיוני כי הניידות גדלה. אבל!!! מצד שני שינוי הניידות בלבד יביא לתוצאות הפוכות מאחר והגדלת הניידות מגדילה גם את יכולת האיסוף – וברגע שיכולת האיסוף גדלה כמות נושאי המטען האפקטיבית בהתקן קטנה ומנגנוני האיבוד נכנסים מאוחר יותר. => יכול להיות שינוי תלוי מורפולוגיה בלבד. 190nm of P3HT(Reike):PCBM (Nano-C)(1:1 ratio, 20mg/ml) in DCB PCE ~ 2%

Recombination in P3HT-PCBM 4 min 10 min 10min 4min 8e-12 1.5e-12 Kb[cm3/sec] צריך קבוע יותר גדול – הגיוני כי הניידות גדלה. אבל!!! מצד שני שינוי הניידות בלבד יביא לתוצאות הפוכות מאחר והגדלת הניידות מגדילה גם את יכולת האיסוף – וברגע שיכולת האיסוף גדלה כמות נושאי המטען האפקטיבית בהתקן קטנה ומנגנוני האיבוד נכנסים מאוחר יותר. => יכול להיות שינוי תלוי מורפולוגיה בלבד. , - Experiment , - Model

Shockley-Read-Hall Recombination , - Experiment , - Model 4 min 10 min LUMO dEt Mid gap HOMO Intrinsic (traps are empty) I. Ravia and N. Tessler, JAPh, vol. 111, pp. 104510-7, 2012. (P doping < 1012cm-3) L. Tzabari and N. Tessler, "JAP, vol. 109, p. 064501, 2011.

The dynamics of recombination at the interface is both Shockley-Read-Hall + Langevin The dynamics of recombination at the interface is both SRH and Langevin 10min 4min 1.2e17 1.9e17 Nt [1/cm3] 0.371 0.435 dEt [eV] 0.5e-12 Kb[cm3/sec] 4 min 10 min LUMO , - Experiment , - Model Mid gap dEt HOMO

Exciton Polaron Recombination M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals., 1982. Neutrally excited molecule (exciton) may transfer its energy to a charged molecule (electron, hole, ion). As in any energy transfer it requires overlap between the exciton emission spectrum and the “ion” absorption spectrum.

Quenching of Excitons by Holes in P3HT Films A. J. Ferguson, N. Kopidakis, S. E. Shaheen and G. Rumbles, J Phys Chem C 112 (26), 9865, 2008 In neat P3HT ramping the excitation power results in exciton-exciton annihilation Generated Charge Density (at t=0) Add 1% PCBM and losses become dominated by Exciton-Polaron recombination. Kep=3x10-8 cm3/s Excitation Density

Exciton Polaron Recombination 4 minutes 10 minutes , - Experiment , - Model Sensitivity 10min 4min 1.05e17 1.9e17 Nt [1/cm^3] 0.015 0.365 0.435 dEt [eV] 1.08e-8 1.6e-8 Kep[cm^3/sec] Nt – Density of traps. dEt - trap depth with respect to the mid-gap level. Kep – Exciton polaron recombination rate. Kd– dissociation rate 1e9-1e10 [1/sec] A. J. Ferguson, et. al., J Phys Chem C, vol. 112, pp. 9865-9871, 2008 (Kep=3e-8) J. M. Hodgkiss, et. al., Advanced Functional Materials, vol. 22, p. 1567, 2012. (Kep=1e-8)

Traps or CT states are stabilized during annealing 4 minutes 10 minutes Sensitivity 10min 4min 1.05e17 1.9e17 Nt [1/cm^3] 0.015 0.365 0.435 dEt [eV] 1.08e-8 1.6e-8 Kep[cm^3/sec] T. A. Clarke, M. Ballantyne, J. Nelson, D. D. C. Bradley, and J. R. Durrant, "Free Energy Control of Charge Photogeneration in Polythiophene/Fullerene Solar Cells: The Influence of Thermal Annealing on P3HT/PCBM Blends," Advanced Functional Materials, vol. 18, pp. 4029-4035, 2008. (~50meV stabilization)

Bias Dependence 10 minutes anneal - Generation - Recombination Charge Generation - Generation - Recombination - Mobility

What does it all mean (summary, conclusions,…) The “geminate” recombination occurs through “defect sites” and their availability limits the recombination. “Defect sites” or “Traps” act like stabilized charge transfer states. At high enough density (depending on morphology) a new channel opens up and Losses become Bi-molecular. Bi-molecular = electron-hole or exciton-polaron? Charge generation requires some field and this is observed at very low light intensities

Degenerate (gas) Pressure  Pressure = Enhanced Diff. Disordered hopping systems degenerate semiconductors Y. Roichman and N. Tessler, APL, vol. 80, pp. 1948-1950, Mar 18 2002. To describe the charge density/population one should use Fermi-Dirac statistics and not Boltzmann Degenerate Degenerate (gas) Degenerate (gas) Pressure  Pressure = Enhanced Diff. White Dwarf It’s effect is in basic thermodynamics texts. Astronomy: Degenerate gas pressure. Fluidics: Osmosis Drift Diffusion Diffusion Seebeck Streaming Streaming Enhanced Diffusion In Semiconductors: D. Mendels and N. Tessler, J. Phys. Chem. C 117 (7), 3287-3293 (2013).

Thank You Ministry of Science, Tashtiyot program Helmsley project on Alternative Energy of the Technion, Israel Institute of Technology, and the Weizmann Institute of Science Israeli Nanothecnology Focal Technology Area on "Nanophotonics for Detection"

Charge recombination is activated

Why Generalized Einstein Relation does not affect the Ideality Factor of PN Diode Long Diode [N. Tessler and Y. Roichman, Org. Electron. 6 (5-6), 200-210 (2005)] In Amorphous semiconductors: Exponential DOS Short Diode [Y. Vaynzof, Y. Preezant and N. Tessler, Journal of Applied Physics 106 (8), 6 (2009)]