2 February. Discussion Questions What’s the difference between Michael and {Michael}? What would happen if we said Michael = {Michael}?

Slides:



Advertisements
Similar presentations
Completeness and Expressiveness
Advertisements

Brief Introduction to Logic. Outline Historical View Propositional Logic : Syntax Propositional Logic : Semantics Satisfiability Natural Deduction : Proofs.
Semantic Paradoxes Continued. RECAP The Barber Paradox Once upon a time there was a village, and in this village lived a barber named B. B shaved all.
PROOF BY CONTRADICTION
Lecture 3 Universal TM. Code of a DTM Consider a one-tape DTM M = (Q, Σ, Γ, δ, s). It can be encoded as follows: First, encode each state, each direction,
Remarks on Mathematical Logic: Paradoxes and Puzzles AAG Selmer Bringsjord The Minds & Machines Laboratory Department of Philosophy, Psychology.
Semantic Paradoxes.
Semantic Paradoxes. THE BARBER The Barber Paradox Once upon a time there was a village, and in this village lived a barber named B.
Copyright © Cengage Learning. All rights reserved.
Basic Structures: Sets, Functions, Sequences, Sums, and Matrices
© by Kenneth H. Rosen, Discrete Mathematics & its Applications, Sixth Edition, Mc Graw-Hill, 2007 Chapter 1: (Part 2): The Foundations: Logic and Proofs.
1 COMP 382: Reasoning about algorithms Unit 9: Undecidability [Slides adapted from Amos Israeli’s]
Week 7 - Wednesday.  What did we talk about last time?  Set proofs and disproofs  Russell’s paradox.
Basic Structures: Sets, Functions, Sequences, Sums, and Matrices
04/23/13 Countability Discrete Structures (CS 173) Derek Hoiem, University of Illinois 1.
Courtesy Costas Busch - RPI1 A Universal Turing Machine.
Great Theoretical Ideas in Computer Science.
CS1001 Lecture 22. Overview Mechanizing Reasoning Mechanizing Reasoning G ö del ’ s Incompleteness Theorem G ö del ’ s Incompleteness Theorem.
Logic and Set Theory.
Fall 2004COMP 3351 Recursively Enumerable and Recursive Languages.
1 Undecidability Andreas Klappenecker [based on slides by Prof. Welch]
1 Uncountable Sets continued Theorem: Let be an infinite countable set. The powerset of is uncountable.
Copyright © Zeph Grunschlag, Set Operations Zeph Grunschlag.
1 More Applications of the Pumping Lemma. 2 The Pumping Lemma: Given a infinite regular language there exists an integer for any string with length we.
Fall 2004COMP 3351 A Universal Turing Machine. Fall 2004COMP 3352 Turing Machines are “hardwired” they execute only one program A limitation of Turing.
Proof by Deduction. Deductions and Formal Proofs A deduction is a sequence of logic statements, each of which is known or assumed to be true A formal.
Rosen 1.6. Approaches to Proofs Membership tables (similar to truth tables) Convert to a problem in propositional logic, prove, then convert back Use.
Set Theory A B C.
Introduction to Proofs
9 February. In Class Assignment #1 Set: {2, 4, 6, 8, 10} MEMBERSUBSETNEITHER 2 {4, 6} {2, 10} {} 3 {{2, 4}, 6, 8, 10}
Unsolvability and Infeasibility. Computability (Solvable) A problem is computable if it is possible to write a computer program to solve it. Can all problems.
1 1 CDT314 FABER Formal Languages, Automata and Models of Computation Lecture 15-1 Mälardalen University 2012.
Methods of Proof Lecture 3: Sep 9. This Lecture Now we have learnt the basics in logic. We are going to apply the logical rules in proving mathematical.
Cantor and Countability: A look at measuring infinities How BIG is big? = a Googol 10 googol = a Googolplex = one Tremilliomilliotrecentrecentre.
Copyright © Cengage Learning. All rights reserved. CHAPTER 7 FUNCTIONS.
A Universal Turing Machine
Background Knowledge Results!. Part I For each of the following topics, rate each according to your level of prior knowledge of (familiarity with) that.
A Brief Introduction to Set Theory. How Many Things?
COMPSCI 102 Introduction to Discrete Mathematics.
Based on Rosen, Discrete Mathematics & Its Applications, 5e Prepared by (c) Michael P. Frank Modified by (c) Haluk Bingöl 1/18 Module.
Naïve Set Theory. Basic Definitions Naïve set theory is the non-axiomatic treatment of set theory. In the axiomatic treatment, which we will only allude.
Activity 1-17: Infinity.
Logicism. Things from Last Time Axiom of Regularity ( ∀ x)[(Ǝa)(a ϵ x) → (Ǝy)(y ϵ x & ~(Ǝz)(z ϵ x & z ϵ y))] If you have a set x And x is not empty Then.
1 Turing’s Thesis. 2 Turing’s thesis: Any computation carried out by mechanical means can be performed by a Turing Machine (1930)
Great Theoretical Ideas in Computer Science.
CS 461 – Nov. 7 Decidability concepts –Countable = can number the elements  –Uncountable = numbering scheme impossible  –A TM undecidable –Language classes.
1 Melikyan/DM/Fall09 Discrete Mathematics Ch. 7 Functions Instructor: Hayk Melikyan Today we will review sections 7.3, 7.4 and 7.5.
CS 285- Discrete Mathematics
Recursively Enumerable and Recursive Languages
 Founded in 1884 by Gottlob Frege and Richard Dedekind  Math can be reduced to 9 simple logical axioms  2 axioms are not logical  Axiom of infinity.
Week 7 - Wednesday.  What did we talk about last time?  Proving the subset relationship  Proving set equality  Set counterexamples  Laws of set algebra.
Section 2.5. Cardinality Definition: A set that is either finite or has the same cardinality as the set of positive integers (Z + ) is called countable.
1 A Universal Turing Machine. 2 Turing Machines are “hardwired” they execute only one program A limitation of Turing Machines: Real Computers are re-programmable.
Fall 2013 Lecture 27: Turing machines and decidability CSE 311: Foundations of Computing.
Sequences Lecture 11. L62 Sequences Sequences are a way of ordering lists of objects. Java arrays are a type of sequence of finite size. Usually, mathematical.
A Universal Turing Machine
CS 461 – Nov. 2 Sets Prepare for ATM finite vs. infinite Infinite sets
Recursively Enumerable and Recursive Languages
2.4 Sequences and Summations
The Liar Paradox.
Countable or Uncountable…That is the question!
Discrete Structures for Computer Science
Decidable Languages Costas Busch - LSU.
Module #4.5, Topic #∞: Cardinality & Infinite Sets
Discrete Mathematics and its Applications
Semantic Paradoxes.
PHIL 2000 Tools for Philosophers 1st Term 2016
Formal Languages, Automata and Models of Computation
Module #4.5, Topic #∞: Cardinality & Infinite Sets
CS21 Decidability and Tractability
Presentation transcript:

2 February

Discussion Questions What’s the difference between Michael and {Michael}? What would happen if we said Michael = {Michael}?

Barber Paradox

The Barber Paradox Once upon a time there was a village, and in this village lived a barber named B.

The Barber Paradox B shaved all the villagers who did not shave themselves, And B shaved none of the villagers who did shave themselves.

The Barber Paradox Question, did B shave B, or not?

Suppose B Shaved B 1. B shaved BAssumption 2. B did not shave any villager X where X shaved X Assumption 3. B did not shave B1,2 Logic

Suppose B Did Not Shave B 1. B did not shave BAssumption 2. B shaved every villager X where X did not shave X Assumption 3. B shaved B1,2 Logic

Contradictions with Assumptions We can derive a contradiction from the assumption that B shaved B. We can derive a contradiction from the assumption that B did not shave B.

The Law of Excluded Middle Everything is either true or not true. Either P or not-P, for any P. Either B shaved B or B did not shave B, there is no third option.

It’s the Law Either it’s Tuesday or it’s not Tuesday. Either it’s Wednesday or it’s not Wednesday. Either killing babies is good or killing babies is not good. Either this sandwich is good or it is not good.

Disjunction Elimination A or B A implies C B implies C Therefore, C

Example Either Michael is dead or he has no legs If Michael is dead, he can’t run the race. If Michael has no legs, he can’t run the race. Therefore, Michael can’t run the race.

Contradiction, No Assumptions B shaves B or B does not shave B [Law of Excluded Middle] If B shaves B, contradiction. If B does not shave B, contradiction. Therefore, contradiction

Contradictions Whenever we are confronted with a contradiction, we need to give up something that led us into the contradiction.

Give up Logic? For example, we used Logic in the proof that B shaved B if and only if B did not shave B. So we might consider giving up logic. A or B A implies C B implies C Therefore, C

No Barber In this instance, however, it makes more sense to give up our initial acquiescence to the story: We assumed that there was a village with a barber who shaved all and only the villagers who did not shave themselves.

The Barber Paradox The paradox shows us that there is no such barber, and that there cannot be.

Russell’s Paradox

Set Theoretic Rules Reduction: a ∈ {x: COND(x)} Therefore, COND(a) Abstraction: COND(a) Therefore, a ∈ {x: COND(x)}

Examples Reduction: Mt. Everest ∈ {x: x is a mountain} Therefore, Mt. Everest is a mountain. Abstraction: Mt. Everest is a mountain. Therefore, Mt. Everest ∈ {x: x is a mountain}

Self-Membered Sets It’s possible that some sets are members of themselves. Let S = {x: x is a set}. Since S is a set, S ∈ {x: x is a set} (by abstraction), and thus S ∈ S (by Def of S). Or consider H = {x: Michael hates x}. Maybe I even hate the set of things I hate. So H is in H.

Russell’s Paradox Set Most sets are non-self-membered. The set of mountains is not a mountain; the set of planets is not a planet; and so on. Define: R = {x: ¬x ∈ x}

Is R in R? 1. R ∈ RYes? 2. R ∈ {x: ¬x ∈ x}1, Def of R 3. ¬R ∈ R2, Reduction 4. ¬R ∈ RNo? 5. R ∈ {x: ¬x ∈ x}4, Abstraction 6. R ∈ R5, Def of R

Historical Importance Russell’s paradox was what caused Frege to stop doing mathematics and do philosophy of language instead.

Comparison with the Liar Russell thought that his paradox was of a kind with the liar, and that any solution to one should be a solution to the other. Basically, he saw both as arising from a sort of vicious circularity.

The von Neumann Heirarchy

Cantor’s Diagonal Proof

Numbers vs. Numerals

Decimal Representations A decimal representation of a real number consists of two parts: A finite string S 1 of Arabic numerals. An infinite string S 2 of Arabic numerals. It looks like this: S 1. S 2

We can’t actually write out any decimal representations, since we can’t write infinite strings of numerals. But we can write out abbreviations of some decimal representations. 1/4 = /7 = π = ? _______

We will prove that there cannot be a list of all the decimal representations between ‘0.0’ and ‘1.0’. A list is something with a first member, then a second member, then a third member and so on, perhaps continuing forever.

Choose an Arbitrary List 1.‘8’‘4’‘3’‘0’ … 2.‘2’‘5’‘6’‘2’‘5’‘6’‘2’‘5’… 3.‘7’‘9’‘2’‘5’‘1’‘0’‘7’‘2’… 4.‘9’‘8’‘0’‘6’‘4’‘2’‘8’‘1’… 5.‘3’ … 6.‘4’‘3’‘7’ ‘1’‘0’‘2’‘0’… 7.‘8’ ‘1’‘3’‘2’‘9’ ‘6’… 8.‘1’‘6’‘1’‘6’‘1’‘6’‘1’‘6’… …

Find the Diagonal 1.‘8’‘4’‘3’‘0’ … 2.‘2’‘5’‘6’‘2’‘5’‘6’‘2’‘5’… 3.‘7’‘9’‘2’‘5’‘1’‘0’‘7’‘2’… 4.‘9’‘8’‘0’‘6’‘4’‘2’‘8’‘1’… 5.‘3’ … 6.‘4’‘3’‘7’ ‘1’‘0’‘2’‘0’… 7.‘8’ ‘1’‘3’‘2’‘9’ ‘6’… 8.‘1’‘6’‘1’‘6’‘1’‘6’‘1’‘6’… …

Diagonal = … Add move each numeral ‘1 up’– so ‘8’ becomes ‘9’, ‘5’ becomes ‘6’, etc. New Representation = …

New Number Not on the List ‘9’‘6’‘3’‘7’‘4’‘1’‘0’‘7’… 1.‘8’‘4’‘3’‘0’ … 2.‘2’‘5’‘6’‘2’‘5’‘6’‘2’‘5’… 3.‘7’‘9’‘2’‘5’‘1’‘0’‘7’‘2’… 4.‘9’‘8’‘0’‘6’‘4’‘2’‘8’‘1’… 5.‘3’ … 6.‘4’‘3’‘7’ ‘1’‘0’‘2’‘0’… 7.‘8’ ‘1’‘3’‘2’‘9’ ‘6’… 8.‘1’‘6’‘1’‘6’‘1’‘6’‘1’‘6’… …

Doesn’t Help to Add It In! ‘9’‘6’‘3’‘7’‘4’‘1’‘0’‘7’… 1.‘8’‘4’‘3’‘0’ … 2.‘2’‘5’‘6’‘2’‘5’‘6’‘2’‘5’… 3.‘7’‘9’‘2’‘5’‘1’‘0’‘7’‘2’… 4.‘9’‘8’‘0’‘6’‘4’‘2’‘8’‘1’… 5.‘3’ … 6.‘4’‘3’‘7’ ‘1’‘0’‘2’‘0’… 7.‘8’ ‘1’‘3’‘2’‘9’ ‘6’… 8.‘1’‘6’‘1’‘6’‘1’‘6’‘1’‘6’… …

Discussion Questions Does this prove you can’t list all the real numbers? How do we fix the proof? Can you use a similar proof to show that the rational numbers aren’t countable? Can you list the powerset of the natural numbers?