SEDIMENTARY GEOLOGY OVERVIEW Andrew S. Madof Orals Review - 2007 January 12, 2007.

Slides:



Advertisements
Similar presentations
ANSWER THE FOLLOWING QUESTIONS
Advertisements

SEDIMENTS & SEDIMENTARY ROCKS
Sedimentary Rocks.
Chapter 7 Sedimentary Rocks
Chapter 8 – FROM SEDIMENT INTO SEDIMENTARY ROCK
Chapter Six Sediments & Sedimentary Rocks. Sediment Sediment - loose, solid particles originating from: –Weathering and erosion of pre-existing rocks.
Sediment and Sedimentary Rocks Physical Geology, Chapter 6
Sediments and Diagenesis The Rock Cycle is a group of changes. It is an ongoing process. Igneous rock can change into sedimentary rock or into metamorphic.
Chapter 10 Sedimentary Rocks. Sedimentary Rocks Accumulations of various types of sediments Compaction: pressure from overlying sediments squeezes out.
Earth Systems 3209 – Unit 3. The Rock Cycle  Why study sedimentary rocks? Economic use, fossils and earths history.  5% of Earths crust is sedimentary.
Sedimentary Rocks. Sedimentary rocks form when sediment is compacted or cemented into solid rock Fig. 3-2, p.46.
Sedimentary Rocks. What is a sedimentary rock? Sedimentary rocks are products of mechanical and chemical weathering They account for about 5 percent (by.
CHAPTER 6 SEDIMENTARY ROCKS.
Section 3: Sedimentary Rock
SEDIMENTARY ROCK Section 6.3.
Chapter 6 Sedimentary Rocks. What is a sedimentary rock? Sedimentary rocks are products of mechanical and chemical weathering. Generally formed by the.
© 2011 Pearson Education, Inc. Earth: An Introduction to Physical Geology, 10e Tarbuck & Lutgens.
6.1/6.2 Guided Notes Hybrid. Weathering, Erosion and Deposition Produces Sediments: small pieces of rock that are moved and deposited by water, wind and.
Lecture Outlines Physical Geology, 13/e
Do Now: What are Sedimentary rocks?.  Explain the processes of compaction and cementation.  Describe how chemical and organic sedimentary rocks form.
Sediments and Sedimentary Rocks. Sedimentary Rocks Igneous Rocks Metamorphic Rocks Magma Sediment Pressure And Cementation Weathering/Erosion Heat and.
Sedimentary Rocks Sedimentary rock is formed by erosion
Sedimentary Rocks Earth Science.
White Sands Nat’l Monument, NM
Sediments and Sedimentary Rocks What are sediments? Sediments are loose particles of former rocks. Sediments may be particles in the form of mineral grains.
Rocks Section 3 Section 3: Sedimentary Rock Preview Objectives Formation of Sedimentary Rocks Types of Sedimentary Rock Chemical Sedimentary Rock Organic.
Sedimentary Rock Section 3.3.
1 SGES 1302 INTRODUCTION TO EARTH SYSTEM LECTURE 16: Sedimentary Rocks.
Rock Cycle Magma- Molten rock below the surface of the Earth Lava- Molten rock above the Earth’s surface Crystallization- When magma cools and forms igneous.
Sedimentary Rocks Chapter 6. What Are Sediments? Loose particulate material In order of decreasing size.
Chapter 6 Sediments and Sedimentary Rocks
Sedimentary Rocks Sedimentary rocks form when sediments harden into rocks 3 main kinds clastic, chemical and organic Most of Earth’s crust is covered by.
Chapter 6 Prepared by Iggy Isiorho for Dr. Isiorho Sediments and Sedimentary Rocks Index 
Sedimentary Rocks Rocks made from sediments. The majority of rocks seen on the earth’s surface are sedimentary rocks.
Section 3: Sedimentary Rock
Lecture Outlines Physical Geology, 14/e
Sedimentary Rocks.
© 2011 Pearson Education, Inc. Sedimentary Rocks Earth, 10e - Chapter 7.
Lithification/ Diagenesis
Sediment and Sedimentary Rocks Formation and Characteristics
UNIT 5 Sedimentary Rocks.
SEDIMENTARY ROCKS.
Lecture Outlines Physical Geology, 12/e
CHAPTER 6.3 SEDIMENTARY ROCKS.
SEDIMENTARY ROCKS. TERMS Weathering : breakdown of pre-existing rock – Physical or chemical breakdown Erosion: transport of sediment on Earth’s surface.
CHAPTER 6-3 SEDIMENTARY ROCKS
Sediment and Sedimentary Rocks
SEDIMENTARY ROCKS.
Rocks Rock makes up the solid part of the earth. Rock is made from minerals or rock can be made of solid organic matter. Three classes of rock: Igneous,
SEDIMENTARY ROCKS What are sediments? They are “loose” rock particles.
Lithification and Classes
Sedimentary Rock Formation. Formation Pre-existing rocks must be broken down Sediments: bits & pieces of pre-existing rock 2 general ways for this to.
Rocks 3 Types of Rocks 1. Igneous Means “from fire” Means “from fire” Forms when magma (molten rock) cools and hardens Forms when magma (molten rock) cools.
Sedimentary Rocks Earth, 9e - Chapter 7. What is a sedimentary rock? Sedimentary rocks - products of mechanical and chemical weathering Comprise about.
Sediment and Sedimentary Rocks Geology
Lecture Outlines Physical Geology, 12/e
Sedimentary Rocks.
SEDIMENTARY ROCKS.
Section 3: Sedimentary Rock
Sedimentary Rocks.
Sedimentary Rocks.
Sedimentary Rocks!.
Chapter 5.
Sedimentary Rock.
Sedimentary Rocks A sedimentary rock is formed by the accumulation and compaction of sediments (rock pieces, minerals, animal parts, or chemical precipitates)
What events lead to the formation of
Sedimentary Rocks.
Sediment Sediment Sediment Sediment Sediment Sedimentary rock
How they form, how they are classified, and why they are important.
Presentation transcript:

SEDIMENTARY GEOLOGY OVERVIEW Andrew S. Madof Orals Review January 12, 2007

SEDIMENTARY GEOLOGY = Sedimentology (process) + Stratigraphy (response) Sedimentology = study of PROCESSES (i.e. production, composition, transport, and deposition of sediment) Stratigraphy = study of RESPONSES (i.e. inferring the controls on the spatial and temporal changes of strata) → exact processes that created the rocks can’t be know because only the rocks are left, not the processes

Sedimentation And Sedimentary Rocks Sedimentary Rocks: Form 75% of the rocks exposed at the Earth’s Surface Are the reservoirs for fossil fuels, iron and aluminum ores, and groundwater Record of Earth’s history

Sediment Sediment = loose, solid particles and can be: –Terrigenous = fragments from silicates (igneous and/or metamorphics) –Biogenic = fossils (carbonate - reefs; silicates - forams) –Chemical = precipates (halite, gypsum, anhydrite, etc…) - note: with chemical sedimentary rocks, evaporation > precipitation and/or supersaturation in closed basins (lakes or oceans) Classified by particle size –Boulder - >256 mm –Cobble - 64 to 256 mm –Pebble - 2 to 64 mm –Sand - 1/16 to 2 mm –Silt - 1/256 to 1/16 mm –Clay - <1/256 mm

Grain size (diameter) and grain-shape depend on: Transport media: rivers (pebbles bounce on river bottom, sand moved in traction, and silt/clay suspended in water column); oceans and lakes (near-shore and deep-water systems); glaciers (sediment moved on glacier bottom); wind (sand dunes) Distance from parent rock: the longer the distance traveled, generally the smaller and the more well-rounded the grains (due to higher kinetic energy) Mineral hardness: the harder the parent rock, the longer it will take the sediments to erode (example: silicates are more resistant to weathering and erosion than feldspars, and this is why beaches are often comprised of sand, not feldspar-rich sediments) Consider: sorting (= range of grain sizes) → winds sort well (meaning grain sizes are very similar); glaciers sort poorly (meaning there is a large spread of grain sizes in glacial deposits) Grain size

Classification Of Sedimentary Rocks DETRITAL (TERRIGENOUS) SEDIMENTARY ROCKS: Mudstones Sandstones Conglomerates Breccias DETRITAL SEDIMENTARY ROCKS: Classification Based On Particle Size a) All detrital rocks are clastic b) Sand and silt are predominantly quartz c) Finer-sized particles of clay minerals

SANDSTONES: a) 25% of all sedimentary rocks b) Sandstone particles (1/16-2 mm in diameter) c) Practical uses of sandstones: buildings and reservoir for fossil fuels and groundwater CONGLOMERATES AND BRECCIAS: a) Grain diameters larger than 2 mm b) Conglomerates have rounded grains c) Breccias have angular grains

Breccia (from fault motion?) Sandstone

MUDSTONES: a) More than half of all sedimentary rocks b) Contain the smallest particles (0.004 mm in diameter) c) Environments of deposition: lakes, lagoons, deep ocean basins, river floodplains d) Color variety of shale represents mineral composition e) Practical uses of shale: bricks, ceramics, cement, and oil shale

Chemical Sedimentary Rocks Inorganic Chemical Sedimentary Rocks a)LIMESTONE (inorganic): I) FORMATION II) Oolitic Limestone III) Tufa IV) Travertine

Lithification = Turning Sediment Into Sedimentary Rock Diagenesis = Changes in the sediment due to increased heat, pressure, and circulating groundwater Lithification = Compaction + Cementation Compaction = Diagenetic process by which the weight of overlying materials reduces the volume of sedimentary body (decreases porosity)

Cementation: Precipitation of dissolved ions in the pore space a) calcium carbonate - CaCO 3 b) silica - SiO 2 c) iron compounds - Fe +2 and Fe +3 Texture of Rock: Formed by compaction and cementation of sediment particles Recrystallization: recrystallization of certain unstable minerals into new, more stable minerals (this happens primarily in carbonates, when you start with carbonate mud [a.k.a. micrite] heat it up, then cool it to form larger grains [a.k.a. sparite]) Cementation & Recrystallization

Types of Sediment

Common Geological Environments

Locations of Subsurface Evaporites

Sedimentary Structures Bedding (stratification): arrangement of sediment particles into distinct layers A) Changes in sediment change bedding B) Changes in transport energy change bedding Normally graded bedding: sediment layer (formed by a single depositional event) in which particle size varies gradually with the coarsest particles on the bottom (note: inversely graded bed = fines on bottom and coarse grains on top )

Cross-bedding: sedimentary layers deposited at an angle to the underlying set of beds Surface sedimentary features A) Ripple Marks: small surface ridges produced when water or wind flows over sediment after it is deposited B) Mudcracks: occur on the top of a sediment layer when muddy sediment dries and contracts Cross-bedding and Mudcracks

Development of Cross-Bedding

Asymmetric and Symmetric Ripples river or wind currents (uni-directional) tidal currents (bi-directional)

Formation of Coal from Swamp Deposits

Initial Deposits of Flat/Tabular Clay

Formation of Ooliths

Origin of Mud Cracks

Lithification of Sediments

Sedimentary Facies Formation

Sediment in a Stream

Marine sedimentary environment

Landward Migration of Shoreline = Regression (regression can either form due to 1) lower sea level or 2) shoreline building basinward [a.k.a. progradation])

Graded Bedding = Vertical Decrease of Sediment Size Turbidity Current = PROCESS Turbidite = RESPONSE