Effects of TLS parameters in Macromolecular Refinement Martyn Winn Daresbury Laboratory, U.K. IUCr99 08/08/99.

Slides:



Advertisements
Similar presentations
TLS REFINEMENT WITH REFMAC5 Martyn Winn CCP4, Daresbury Laboratory, U.K. Bangalore, February 2008.
Advertisements

Disorder.
Refinement Garib N Murshudov MRC-LMB Cambridge 1.
CCP4 workshop: Diamond – 2014 ___________________________________________ Refinement Garib N Murshudov MRC-LMB Cambridge 1.
Refinement of Macromolecular structures using REFMAC5 Garib N Murshudov York Structural Laboratory Chemistry Department University of York.
Macromolecular structure refinement Garib N Murshudov York Structural Biology Laboratory Chemistry Department University of York.
Symmetry is the concept of repetitive arrangements of similar objects in space. In three dimensions, objects may be arranged in a large number of ways.
Refinement with REFMAC
Data quality and model parameterisation Martyn Winn CCP4, Daresbury Laboratory, U.K. Prague, April 2009.
Amino acids and proteins … for AS Biology. Amino acids Proteins are macromolecules consisting of long unbranched chains of amino acids. All amino acids.
REFMAC5 Roberto A. Steiner IFOM Istituto FIRC di Oncologia Molecolare Milan, Italy.
TLS MODELLING OF ANISOTROPY IN MACROMOLECULAR REFINEMENT Martyn Winn CCP4, Daresbury Laboratory, U.K. York, April 11th 2002.
TLS REFINEMENT WITH REFMAC5 Martyn Winn CCP4, Daresbury Laboratory, U.K. Florence, August 23rd 2005.
Data Harvesting: automatic extraction of information necessary for the deposition of structures from protein crystallography Martyn Winn CCP4, Daresbury.
Mechanism of alcohol dehydrogenase
TLS REFINEMENT Theory, background and application Martyn Winn CCP4, Daresbury Laboratory, U.K. Prague, April 2009.
Organic Macromolecules: Proteins and Nucleic Acids.
Volume 6, Issue 1, Pages (January 1998)
Structural Biology Laboratory
Molecular Mechanism of Antibody-Mediated Activation of β-galactosidase
Crystal Structure of the Tandem Phosphatase Domains of RPTP LAR
Structural Basis of the Redox Switch in the OxyR Transcription Factor
Volume 105, Issue 4, Pages (May 2001)
Olivier Fisette, Stéphane Gagné, Patrick Lagüe  Biophysical Journal 
Structure of an LDLR-RAP Complex Reveals a General Mode for Ligand Recognition by Lipoprotein Receptors  Carl Fisher, Natalia Beglova, Stephen C. Blacklow 
SH3-SH2 Domain Orientation in Src Kinases
AG-221 structure and binding characteristics.
Kei-ichi Okazaki, Shoji Takada  Structure 
Transconformations of the SERCA1 Ca-ATPase: A Normal Mode Study
Volume 85, Issue 7, Pages (June 1996)
Ubiquitin Recognition by the Human TSG101 Protein
Large-Scale Conformational Dynamics of the HIV-1 Integrase Core Domain and Its Catalytic Loop Mutants  Matthew C. Lee, Jinxia Deng, James M. Briggs, Yong.
The Mechanism of E. coli RNA Polymerase Regulation by ppGpp Is Suggested by the Structure of their Complex  Yuhong Zuo, Yeming Wang, Thomas A. Steitz 
Volume 8, Issue 7, Pages (July 2000)
Volume 15, Issue 1, Pages (January 2007)
Nadine Keller, Jiří Mareš, Oliver Zerbe, Markus G. Grütter  Structure 
Rainer A. Böckmann, Helmut Grubmüller  Biophysical Journal 
Volume 98, Issue 2, Pages (January 2010)
Three-dimensional structure of B. subtilis PRPP synthase.
Joe G. Greener, Ioannis Filippis, Michael J.E. Sternberg  Structure 
Volume 16, Issue 5, Pages (May 2008)
Structural Basis of Core Promoter Recognition in a Primitive Eukaryote
Structural Analysis of Ligand Stimulation of the Histidine Kinase NarX
Janin Glaenzer, Martin F. Peter, Gavin H. Thomas, Gregor Hagelueken 
Volume 20, Issue 7, Pages (July 2012)
Volume 96, Issue 7, Pages (April 2009)
Volume 17, Issue 10, Pages (October 2009)
The Structure of the Tiam1 PDZ Domain/ Phospho-Syndecan1 Complex Reveals a Ligand Conformation that Modulates Protein Dynamics  Xu Liu, Tyson R. Shepherd,
Volume 103, Issue 6, Pages (September 2012)
Fig. 1 A single amino acid difference in the ATP-binding domain of GSK3α and GSK3β results in structural and topological differences. A single amino acid.
Conformational changes on substrate binding to methylmalonyl CoA mutase and new insights into the free radical mechanism  Filippo Mancia, Philip R Evans 
Karunesh Arora, Tamar Schlick  Biophysical Journal 
Martin Klumpp, Wolfgang Baumeister, Lars-Oliver Essen  Cell 
Elena Conti, Nick P Franks, Peter Brick  Structure 
Volume 11, Issue 12, Pages (December 2003)
Volume 15, Issue 3, Pages (March 2007)
Volume 6, Issue 1, Pages (January 1998)
Min Wang, Mary Prorok, Francis J. Castellino  Biophysical Journal 
Tertiary Structure of Destrin and Structural Similarity between Two Actin-Regulating Protein Families  H Hatanaka, K Ogura, K Moriyama, S Ichikawa, I.
Dielectric Properties of Proteins from Simulation: The Effects of Solvent, Ligands, pH, and Temperature  Jed W. Pitera, Michael Falta, Wilfred F. van.
Dominico Vigil, Stephen C. Gallagher, Jill Trewhella, Angel E. García 
Structure of the Staphylococcus aureus AgrA LytTR Domain Bound to DNA Reveals a Beta Fold with an Unusual Mode of Binding  David J. Sidote, Christopher.
Dynamic Transmission of Protein Allostery without Structural Change: Spatial Pathways or Global Modes?  Tom C.B. McLeish, Martin J. Cann, Thomas L. Rodgers 
X-Ray Crystallography Reveals a Large Conformational Change during Guanyl Transfer by mRNA Capping Enzymes  Kjell Håkansson, Aidan J. Doherty, Stewart.
Crystal Structure of the Tyrosine Phosphatase SHP-2
Solution Structure of the Proapoptotic Molecule BID
Molecular Mechanism of Antibody-Mediated Activation of β-galactosidase
Y. Zenmei Ohkubo, Emad Tajkhorshid  Structure 
Volume 21, Issue 6, Pages (June 2013)
Volume 95, Issue 2, Pages (October 1998)
Presentation transcript:

Effects of TLS parameters in Macromolecular Refinement Martyn Winn Daresbury Laboratory, U.K. IUCr99 08/08/99

Overview Background to the use of TLS tensors. Details of TLS refinement. Implementation in REFMAC: examples

Contributions to atomic U U = U crystal + U TLS + U internal + U atom U crystal : overall anisotropic scale factor w.r.t. crystal axes. U TLS : rigid body displacements e.g. of a.s.u., molecules, domains, secondary structure elements, aromatic rings of side groups, etc. U internal : internal displacements of molecules, e.g. normal modes of vibration, torsions, etc. U atom : anisotropy of individual atoms

TLS: small molecules D.W.J.Cruikshank (1956) - TL analysis G.S.Pawley (1964, 1966) - TL refinement V.Schomaker & K.N.Trueblood (1968) - introduction of S in analysis of ADPs J.D.Dunitz & D.N.J.White (1973) - inclusion of internal torsional motion of “attached rigid group”

TLS: macromolecules S.R.Holbrook et al (1985) - duplex DNA dodecanucleatide, 1.9Å, 70 groups (phosphate, ribose, base), CORELS B.Howlin et al (1989) - bovine Ribonuclease A, 1.45Å, RESTRAIN G.W.Harris et al (1992) - papain, 1.6Å, RESTRAIN Sali et al (1992) - endothiapepsin complex, 1.8Å, RESTRAIN

Rigid body motion Linearise general displacement u of atom (mean position r) in rigid body: u = t + D.r  t + x r Corresponding dyad: uu = tt + t x r - r x t - r x x r Average over dynamic motion and static disorder gives atomic ADP: U  = T + S T x r - r x S - r x L x r T, L and S describe mean square translation, libration and their correlation of rigid body.

TLS in refinement Need to specify TLS groups for molecule of interest = 20 parameters per group (trace of S is undetermined). T and S (but not L ) origin-dependent. S is symmetric if origin is Centre of Reaction. Gradients of residual w.r.t. TLS parameters follow from gradients w.r.t. U ’s via chain rule.

NCS REFMAC applies restraints to B and U values of NCS-related molecules. But different molecules in a.s.u. may have different overall thermal parameters. Refine independent overall TLS tensors for each molecule before refining restrained individual parameters.

Choice of TLS groups Choose TLS groups using: –chemical knowledge, e.g. aromatic side groups of amino acids, domains of macromolecules –fit to ADPs of test structure, e.g. Holbrook & Kim (1984) compared 7 rigid body models of CMP and used best as basis for partitioning other nucleic acids. –dynamic domains identified from similar structures, e.g. from apo and holo forms of alcohol dehydrogenase

Implementation in REFMAC Refine TLS parameters against ML residual, using previously refined atomic coordinates and B factors. TLS parameters held in TLSIN/TLSOUT files. Analyse with TLSANL program.  libration axes, etc and ADPs To be implemented: Allow TLS refinement prior to or simultaneously with refinement of other parameters.

E.g. 1 - GAPDH Glyceraldehyde-3-phosphate dehydrogenase from Sulfolobus solfataricus (M.N.Isupov et al, JMB, in press) P , 2.0Å, 2 molecules in a.s.u., each molecule has NAD-binding and catalytic domains.

E.g. 1 - GAPDH ScalingBisoTLS groupsR factorR free IsotropicRefined AnisotropicRefined IsotropicRefined IsotropicRefined IsotropicRefined Isotropic35Ų Isotropic35Ų Isotropic35Ų Isotropic35Ų

E.g.1: axes of libration Refined Bs. Blue - chain O, NAD- binding domain Red - chain O, catalytic domain Green - chain Q, NAD- binding domain Yellow - chain Q, catalytic domain

E.g.1: axes of libration Constant Bs. Blue - chain O, NAD- binding domain Red - chain O, catalytic domain Green - chain Q, NAD- binding domain Yellow - chain Q, catalytic domain

E.g.2: ADH horse liver alcohol dehydrogenase (S.Ramaswamy et al). apo form: C222 1, 2.0Å, single chain in a.s.u. DYNDOM results from apo vs. holo forms. ScalingBisoTLS groupsR factorR free IsotropicRefined AnisotropicRefined IsotropicRefined IsotropicRefined IsotropicRefined

E.g.2: dynamic domains Results from DYNDOM. Blue - first domain Red - second domain Green - hinge region

E.g.2: axes of libration TLS groups: Blue - first dynamic domain Red - second dynamic domain Green - hinge region Yellow - flexible loop

E.g. 3: lysozyme complex Hen egg white lysozyme complexed with camelid single-chain antibody (K. Decanniere et al). C2, 2.1Å, single copy in a.s.u. ScalingBisoTLS groupsR factorR free IsotropicRefined AnisotropicRefined IsotropicRefined IsotropicRefined 4*

E.g.3: axes of libration Simple minimisation. Blue - antibody Red - CRD3 loop of antibody Green - lysozyme Yellow - lysozyme

E.g.3: axes of libration Minimisation with TLS constrained to be positive semi-definite Blue - antibody Red - CRD3 loop of antibody Green - lysozyme Yellow - lysozyme

Acknowledgements CCP4 BBSRC Garib Murshudov (REFMAC) Misha Isupov (GAPDH) S Ramaswamy (ADH) Klaas Decanniere (lysozyme complex)