North Sea Strike Slip Fault Study – The ultimate before and after. To the left you see the best the client could do on a “well-cutting” cross line. To.

Slides:



Advertisements
Similar presentations
Microsoft ® Word 2010 Training Create your first Word document II.
Advertisements

Well-Seismic Ties Lecture 7 Depth Time Synthetic Trace SLIDE 1
Proving ADAPS via honest results. No well data is input
North Sea faulting How the ADAPS inversion / integration clarifies the strike-slip structure – by David Paige This study was originally proposed September,
Microsoft® Office Word 2007 Training
Drawing In One-Point Perspective
Introducing the piggy back noise problem. This is what we saw visually on the 3D gather data. Strong and persistent cps waves riding on very low.
From shale play To Gulf coast prospects There are timed topics on many slides. An “end” message will inform you when the slide is done. The show discusses:
1.The seismic energy continuum consists of thousands of independent primary reflections, each coming from a single reflecting interface. 2. There is no.
? Mapping of gulf coast strike slip faults To the left is a set of associated strike slip and adjustment faults on the Lousiana coast. The section itself.
In the next series I present this set of cutouts and try to explain that each shows a refraction event that was lifted off. To see the events on the full.

From shale play To Gulf coast prospects There are timed topics on many slides. An “end” message will inform you when the slide is done. The show discusses:
AS MAPPING.
Seismic Stratigraphy EPS 444
Going for the RED is an approach used by But for Red to indicate hydrocarbons (like this example) lots of things have to be true. The project I use for.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Chapter 21 More About Tests and Intervals.
Near traces or Middle traces or Far traces The A mplitude V ersus O ffset mythology. If ever a single picture could prove a negative, this one might be.
A North Sea processing & Interpretation story. The same well image was shown on both the before and after sections above. As you may have noted, it is.
The ADAPS visual approach to interpretation When Dr. Robin Westerman talked Nexen into trying ADAPS I was presented with the display of the problem shown.
? Mapping of gulf coast strike slip faults To the left is a set of associated strike slip and adjustment faults on the Lousiana coast. The section itself.
The evolution of the down wave. We hit the earth with some sort of an impact which results in a movement. Since the earth is elastic, it rebounds past.
Environmental and Exploration Geophysics II tom.h.wilson Department of Geology and Geography West Virginia University Morgantown, WV.
Microsoft ® Word 2010 Training Create your first Word document II.
GG450 April 22, 2008 Seismic Processing.
A North Sea processing & Interpretation story. The same well image was shown on both the before and after sections above. As you may have noted, it is.
De-noising Vibroseis The contention is that the correlated Vibroseis field record (to the far left) is a mess of overlapping coherent noise and signal,
GG 450 April 30, 2008 Seismic Reflection Interpretation.
GG 450 April 31, 2008 Reflection Interpretation 2.
The danger is that you’ll never believe your old interpretations after viewing this show. In my main show I compare 32 in-lines before and after noise.
Toggle guide Before A tutorial on the effect of seismic noise. (Requires lots of toggling to really see how noise interacts with signal). I start with.
Another example of critical angle refraction noise.
There is a time for ultra seismic accuracy but that comes after we have located something exciting enough to look at. Since migration before stack almost.
Going for the RED is an approach used by older interpreters. But for red to indicate hydrocarbons (like this example), lots of things have to be true that.
Shale Lime Sand The argument for non-linear methods. 1 The geology 2. The reflection coefficients (spikes in non-linear lingo). 3. The down wave 4. Its.
So where does the ADAPS optimization method fit into this framework? The seismic trace equation does not fit the linear definition, since the values on.
Seismic is not too complex for geologists - If you can understand convolution, you have it made. Simply stated, when downward traveling waves pass by a.
Why determining an exact waveform is next to impossible. We start at the recording point with these facts – 1. The seismic continuum consists of overlapping.
Some background and a few basics - How my inversion works – and why it is better - How added resolution makes parallel fault picking a possibility – The.
Welcome to a before and after coherent noise removal series. There is a lot to explain about what is going on here, so I am using this otherwise wasted.
A list of inversion error causes that all attribute junkies should really understand: 1.Definition of inversion – A seismic trace is the product of the.
Depth point 1 A study of the effects of early critical angle crossings. From data I (Paige) had previously processed to check out my sonic log synthesis.
Processing Lab 9 Objectives: - View a timeslice - Consider binning effects on migration - Post stack Migration Sumit VermaBryce Hutchinson.
Copyright © 2009 Pearson Education, Inc. Chapter 21 More About Tests.
ADAPS optimized stack of line 401 (no inversion or integration). Please toggle with conditioned version I start with the Paige optimized stack v.s. the.
Processing Lab 3 – Header issues and trace editing Bryce Hutchinson Objectives: Fixing elevation issues Define an LMO function Pick first breaks Kill traces.
EQ: How can we learn the basics of formatting a college research paper in Microsoft Word? Mini Unit: Typing a Paper Diogene Date: 4/20/2015 Course: ELA-Grade.
Elements of Art Picture Quiz! High school D Drawing Christian Rasmussen To Elements of Art.
Seismic Imaging in GLOBE Claritas
Environmental and Exploration Geophysics II tom.h.wilson Department of Geology and Geography West Virginia University Morgantown, WV.
Because noise removal is central to my later work, I start with a discussion on how intertwined coherent noise creates a random effect that confuses all.
Dipping layer reflection events and the common midpoint gather
ADAPS multiple removal demo. The upper halves of the slides in this series show the input gathers.The bottoms show the same data with multiples removed.
Visual interpretation is still the best. You can see reservoir possibilities that have been missed, and do it at a fraction of the normal cost. The tougher.
Bryce Hutchinson & Sumit Verma
Welcome to a wild ride through ideas. In this show I am suggesting that the multiple fractures associated with strike slip faulting can accomplish the.
How the Saudi / shale oil battle should make us stop & think. (and I don’t mean about geo-politics). The shale production reality reminds us the Saudi.
1 2 Thinking is a matter of cleverness. 3 Wisdom is not as important as cleverness.
Why inversion & integration is needed to see stratigraphy.
Can we see shale fractures? Some claim to already doing it but I have my doubts. I believe I’m close, but not there yet. I’d like opinions. The section.
Probing the question of “how good can seismic get? I ask you to spend a good amount of time just looking at the amazing detail this section shows. When.
Info Read SEGY Wavelet estimation New Project Correlate near offset far offset Display Well Tie Elog Strata Geoview Hampson-Russell References Create New.
Geology 5660/6660 Applied Geophysics 24 Feb 2016 © A.R. Lowry 2016 For Fri 26 Feb: Burger (§8.4) Last Time: Industry Seismic Interpretation Well.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Chapter 21 More About Tests and Intervals.
A history of misguided pre-stack processing.
How to Start This PowerPoint® Tutorial
How Students Navigate a Test and Use Test Tools
From Raw Data to an Image
BEFORE AFTER Let’s start by examining this particular sonic log match. We have super-imposed it both on the input (before) and on the output (after). Some.
From shale play To Gulf coast prospects
Presentation transcript:

North Sea Strike Slip Fault Study – The ultimate before and after. To the left you see the best the client could do on a “well-cutting” cross line. To the right is the ADAPS simulated sonic log section on the same data. The well log image is superimposed on both. As you click through this first series of comments, I will point out important differences. In the meantime just look at the display comparison and get a general feel for the quality of their stack. I have drawn two strike slip faults on the ADAPS side. If you continue through the entire series you will se these faults justified. An important goal of this show is to convince the reader that almost everything you see to the right is coming from real reflection events, whereas what you see on the left is mostly noise. This confidence is vitally important when we come to the task of lining up the strike slip fault breaks. First we look at zone A on the original stack. The ADAPS pre-stack processing has essentially removed this noise event. B (on both sides) is a regional marker shale, identified at the well. On the ADAPS output we show an uplift across the interpreted fault..Later we will use this market to illustrate how the system has enabled fault picking. Please note that I have not tried to pick all the faults I see here. Looking at point C on the left, one can see that the ADAPS processing has broken the previous continuity where we figured the one fault went. The same is true all the way up the picked fault. This is the essence of how the system improves visual interpretation. There is a lot to learn from this pair, so take your time, then click anywhere to continue. A B B C B

strike-slip fault tracking. This animated series will take you inside the Initial study I made on Nexen’s North Sea (Blackbird) data. This ADAPS output section is close to their discovery well. Their seismic interpretation at the time was on-lapping sands nestled against a major thrust? fault, as below. Hopefully you can remember how lousy the input was as we move along.. Click to see the main fault, then again for the ancillary detail. We’ve now introduced some ancillary faults. Hopefully you will have noticed the geologic picture getting clarified. With strike slip faults one side is “torn” from the other to accommodate deep plate movement. Normal and shear faults are easy to pick because of the relatively constant bed offsets. Strike slip faults are horizontal and we cannot depend on there being visible breaks. If the stratigraphy were completely regular and there was no vertical throw, we we would not see the (major) green fault so clearly. The simulated sonic log capability of ADAPS is crucial in this situation. Bed thicknesses are vitally important in cross- fault correlations, especially when pre- stack migration (and other “mixing” logic) blurs the breaks. Take the time to note how the picked faults separate partitions that make good geological sense. The next series of slides verifies the fault pattern and further proves that the bulk of what we are seeing represents real stratigraphic detail. The event marked by the four stars is a marker shale, identified at the well site. On this in-line it is easily correlated across the ancillary faults, with little vertical throw. As we move towards the discovery well, you will see the vertical throws changing. The first time through, click rapidly while you follow the stars. When you get to the end of the series, return here and study the faulting more carefully. Watch the bright spots, since I believe they represent probable reservoirs. Click anywhere to proceed.

We have moved 10 in-lines towards the discovery well. In my original study I followed the starred event on every in-line and can assure you I arrived at this correlation with no problem. The vital point I am trying to make with this series is that the final offset between the first and last stars is the result of faulting, rather than dip. As we go you will see the individual offset components changing Sonic log simulating is key to our visual correlation. Follow the sequence at left to the main green strike slip fault.

Pause here for a particularly good stratigraphic correlation showing shifts between the faults (up to the main one). There’s a temptation to jump across to the red star. If this turned out to be correct it would require a fairly drastic thinning in the correlation span I pointed out on the last slide. Of course this ties in with the idea of significant lateral movement. This is the same set of faults I’ve been following, although the pattern is a little different. I have jumped 20 in-lines this time. However. From a logical point of view, the fact that this general pattern independently fits, in-line after in-line, is apriori proof of resolution improvement. Note that fault A is taking on much of the vertical shift of the marker shale as we go on. A

A When an interpreter has spent years assuming faults are either normal or thrust, it’s tough to shift to the horizontal perspective, especially when horizontal faults are hard to see.. Shear, of course, is the biggest reason. When you slide one block against another the rough edges on both are smoothed (in the direction of the movement). Thus, on normal and shear faults we see a nice, linear lineup of the breaks on our seismic section. Compatible lithology is also a reason these traditionally accepted faults are easy to pick. In other words we can expect reasonable stratigraphic correlation across the breaks. On strike slip faults, compatible lithology works against us. If no vertical throw is involved, we have to pick breaks right through what looks like continuity. Obviously this precludes automatic picking and mapping. Complete detuning becomes more essential in the fault break picking process. Changes in bed thickness and amplitudes may be our only clues. While complete automation of these attributes might be possible in the future, visual interpretation is the obvious current fallback. Reservoir spotting. While we are on that subject, please take the time to note the various “hot spots” that appear in the series, noting that most coincide with obvious trapping circumstances. By the time we get to the discovery well I trust you will agree that particular site does not look too great.

3 things of interest here – 1.The green arrow points to where the pre-stack migration logic very likely is mistakenly assuming that a large fault break is really a steeply dipping event that it needs to handle. This is very common throughout this and other jobs.. 2.The black arrow points to a probable untapped reservoir. 3.The red arrow points to a probable “zero vertical throw” fault juncture. While this is highly subjective, such interpretive decisions require a lot of detailed visual examination.

Here we see a change of lithologic character across the same fault. This helps in the overall interpretation.

Another pause just before the well – I would like you to consider the rather good correlation between star X and star Y. X Y At least it seems good when one compares to the to the quality of the client’s stack.

. Repeat the fault series by clicking arrow Else press right arrow to proceed. Here’s the discovery well. The marker shale is at the top of the oval and the producing sands peak through at the bottom. Obviously the ADAPS results did not think much of this site. selection In summary, I have tried to show: 1.That the producing zone is cut by a number of strike slip faults, creating a complex set of potential reservoirs. 2.That more promising prospects can be seen using advanced detuning.

This is a 200+ trace, pre migration, Blackbird gather. The strong event marked with the yellow arrow is undoubtedly the chalk. Very early it is cloning into a reverberating refraction. Energy from this phenomenon can be seen making its way back to the inside. In any case all the outside traces are essentially garbage. One can spend hours studying the various noise ramifications here. This whole subject is discussed fully in the main series. The point here is that the fact that ADAPS treated this generic problem on a pre-stack basis was one factor behind the remarkable improvement. Before ADAPS no one was looking at gathers, and all attention was on “near, middle and far trace stacks”. My “industry icon” certainly fits here. Then there is the general information display problem. This presentation visually displays the results of my interpretation effort. Passing the final ADAPS product to today’s automated mapping tools completely loses most of the important information that has been developed. One of my biggest arguments with Ikon Science (during development days) was their disregard of the importance of PowerPoint like reports in client presentations. Clients would come back with relatively meaningless time or horizon slices, missing the point of the enhanced lithology. In this project, where the potential reservoirs are split into fault blocks, trying to map reservoirs automatically (without a lot of preliminary analysis) is a big problem. This show is a essentially a subset of the original. Its main purpose is to illustrate how the powerful de-tuning capabilities of ADAPS were utilized in a comprehensive interpretation effort. Of course this is the product I am touting. Click here to start over - Click here to see the original Nexen show. Or here to go to the associated noise show. Or here to go to the ADAPS router. Remember these are PowerPoints and are slow to load!