Meng-Kai Hsu, Sheng Chou, Tzu-Hen Lin, and Yao-Wen Chang Electronics Engineering, National Taiwan University Routability Driven Analytical Placement for.

Slides:



Advertisements
Similar presentations
Multilevel Hypergraph Partitioning Daniel Salce Matthew Zobel.
Advertisements

Optimization of Placement Solutions for Routability Wen-Hao Liu, Cheng-Kok Koh, and Yih-Lang Li DAC’13.
Fast Algorithms For Hierarchical Range Histogram Constructions
Yi-Lin Chuang1, Sangmin Kim2, Youngsoo Shin2, and Yao-Wen Chang National Taiwan University, Taiwan KAIST, Korea 2010 DAC.
Wen-Hao Liu1, Yih-Lang Li, and Cheng-Kok Koh Department of Computer Science, National Chiao-Tung University School of Electrical and Computer Engineering,
Natarajan Viswanathan Min Pan Chris Chu Iowa State University International Symposium on Physical Design April 6, 2005 FastPlace: An Analytical Placer.
A Size Scaling Approach for Mixed-size Placement Kalliopi Tsota, Cheng-Kok Koh, Venkataramanan Balakrishnan School of Electrical and Computer Engineering.
Shuai Li and Cheng-Kok Koh School of Electrical and Computer Engineering, Purdue University West Lafayette, IN, Mixed Integer Programming Models.
Ripple: An Effective Routability-Driven Placer by Iterative Cell Movement Xu He, Tao Huang, Linfu Xiao, Haitong Tian, Guxin Cui and Evangeline F.Y. Young.
National Tsing Hua University Po-Yang Hsu,Hsien-Te Chen,
SimPL: An Effective Placement Algorithm Myung-Chul Kim, Dong-Jin Lee and Igor L. Markov Dept. of EECS, University of Michigan 1ICCAD 2010, Myung-Chul Kim,
Paul Falkenstern and Yuan Xie Yao-Wen Chang Yu Wang Three-Dimensional Integrated Circuits (3D IC) Floorplan and Power/Ground Network Co-synthesis ASPDAC’10.
1 Physical Hierarchy Generation with Routing Congestion Control Chin-Chih Chang *, Jason Cong *, Zhigang (David) Pan +, and Xin Yuan * * UCLA Computer.
Coupling-Aware Length-Ratio- Matching Routing for Capacitor Arrays in Analog Integrated Circuits Kuan-Hsien Ho, Hung-Chih Ou, Yao-Wen Chang and Hui-Fang.
FastPlace: Efficient Analytical Placement using Cell Shifting, Iterative Local Refinement and a Hybrid Net Model FastPlace: Efficient Analytical Placement.
Congestion Driven Placement for VLSI Standard Cell Design Shawki Areibi and Zhen Yang School of Engineering, University of Guelph, Ontario, Canada December.
Routability-Driven Blockage-Aware Macro Placement Yi-Fang Chen, Chau-Chin Huang, Chien-Hsiung Chiou, Yao-Wen Chang, Chang-Jen Wang.
ISQED’2015: D. Seemuth, A. Davoodi, K. Morrow 1 Automatic Die Placement and Flexible I/O Assignment in 2.5D IC Design Daniel P. Seemuth Prof. Azadeh Davoodi.
38 th Design Automation Conference, Las Vegas, June 19, 2001 Creating and Exploiting Flexibility in Steiner Trees Elaheh Bozorgzadeh, Ryan Kastner, Majid.
Supply Voltage Degradation Aware Analytical Placement Andrew B. Kahng, Bao Liu and Qinke Wang UCSD CSE Department {abk, bliu,
Triple Patterning Aware Detailed Placement With Constrained Pattern Assignment Haitong Tian, Yuelin Du, Hongbo Zhang, Zigang Xiao, Martin D.F. Wong.
A Resource-level Parallel Approach for Global-routing-based Routing Congestion Estimation and a Method to Quantify Estimation Accuracy Wen-Hao Liu, Zhen-Yu.
Metal Layer Planning for Silicon Interposers with Consideration of Routability and Manufacturing Cost W. Liu, T. Chien and T. Wang Department of CS, NTHU,
POLAR 2.0: An Effective Routability-Driven Placer Chris Chu Tao Lin.
Placement-Centered Research Directions and New Problems Xiaojian Yang Amir Farrahi Synplicity Inc.
Chih-Hung Lin, Kai-Cheng Wei VLSI CAD 2008
MGR: Multi-Level Global Router Yue Xu and Chris Chu Department of Electrical and Computer Engineering Iowa State University ICCAD
A Topology-based ECO Routing Methodology for Mask Cost Minimization Po-Hsun Wu, Shang-Ya Bai, and Tsung-Yi Ho Department of Computer Science and Information.
Area-I/O Flip-Chip Routing for Chip-Package Co-Design Progress Report 方家偉、張耀文、何冠賢 The Electronic Design Automation Laboratory Graduate Institute of Electronics.
Authors: Jia-Wei Fang,Chin-Hsiung Hsu,and Yao-Wen Chang DAC 2007 speaker: sheng yi An Integer Linear Programming Based Routing Algorithm for Flip-Chip.
CRISP: Congestion Reduction by Iterated Spreading during Placement Jarrod A. Roy†‡, Natarajan Viswanathan‡, Gi-Joon Nam‡, Charles J. Alpert‡ and Igor L.
Global Routing.
Etron Project: Placement and Routing for Chip-Package-Board Co-Design
TSV-Aware Analytical Placement for 3D IC Designs Meng-Kai Hsu, Yao-Wen Chang, and Valerity Balabanov GIEE and EE department of NTU DAC 2011.
Solving Hard Instances of FPGA Routing with a Congestion-Optimal Restrained-Norm Path Search Space Keith So School of Computer Science and Engineering.
1 Global Routing Method for 2-Layer Ball Grid Array Packages Yukiko Kubo*, Atsushi Takahashi** * The University of Kitakyushu ** Tokyo Institute of Technology.
Wen-Hao Liu 1, Yih-Lang Li 1, and Kai-Yuan Chao 2 1 Department of Computer Science, National Chiao-Tung University, Hsin-Chu, Taiwan 2 Intel Architecture.
March 20, 2007 ISPD An Effective Clustering Algorithm for Mixed-size Placement Jianhua Li, Laleh Behjat, and Jie Huang Jianhua Li, Laleh Behjat,
VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 5: Global Routing © KLMH Lienig 1 EECS 527 Paper Presentation High-Performance.
Archer: A History-Driven Global Routing Algorithm Mustafa Ozdal Intel Corporation Martin D. F. Wong Univ. of Illinois at Urbana-Champaign Mustafa Ozdal.
A NEW ECO TECHNOLOGY FOR FUNCTIONAL CHANGES AND REMOVING TIMING VIOLATIONS Jui-Hung Hung, Yao-Kai Yeh,Yung-Sheng Tseng and Tsai-Ming Hsieh Dept. of Information.
Quadratic and Linear WL Placement Using Quadratic Programming: Gordian & Gordian-L Shantanu Dutt ECE Dept., Univ. of Illinois at Chicago Acknowledgements:
Regularity-Constrained Floorplanning for Multi-Core Processors Xi Chen and Jiang Hu (Department of ECE Texas A&M University), Ning Xu (College of CST Wuhan.
Massachusetts Institute of Technology 1 L14 – Physical Design Spring 2007 Ajay Joshi.
Ho-Lin Chang, Hsiang-Cheng Lai, Tsu-Yun Hsueh, Wei-Kai Cheng, Mely Chen Chi Department of Information and Computer Engineering, CYCU A 3D IC Designs Partitioning.
Placement. Physical Design Cycle Partitioning Placement/ Floorplanning Placement/ Floorplanning Routing Break the circuit up into smaller segments Place.
Jason Cong‡†, Guojie Luo*†, Kalliopi Tsota‡, and Bingjun Xiao‡ ‡Computer Science Department, University of California, Los Angeles, USA *School of Electrical.
IO CONNECTION ASSIGNMENT AND RDL ROUTING FOR FLIP-CHIP DESIGNS Jin-Tai Yan, Zhi-Wei Chen 1 ASPDAC.2009.
VLSI Physical Design: From Graph Partitioning to Timing Closure Chapter 6: Detailed Routing © KLMH Lienig 1 What Makes a Design Difficult to Route Charles.
GLARE: Global and Local Wiring Aware Routability Evaluation Yaoguang Wei1, Cliff Sze, Natarajan Viswanathan, Zhuo Li, Charles J. Alpert, Lakshmi Reddy,
ARCHER:A HISTORY-DRIVEN GLOBAL ROUTING ALGORITHM Muhammet Mustafa Ozdal, Martin D. F. Wong ICCAD ’ 07.
Tao Lin Chris Chu TPL-Aware Displacement- driven Detailed Placement Refinement with Coloring Constraints ISPD ‘15.
Deferred Decision Making Enabled Fixed- Outline Floorplanner Jackey Z. Yan and Chris Chu DAC 2008.
Register Placement for High- Performance Circuits M. Chiang, T. Okamoto and T. Yoshimura Waseda University, Japan DATE 2009.
1 Efficient Obstacle-Avoiding Rectilinear Steiner Tree Construction Chung-Wei Lin, Szu-Yu Chen, Chi-Feng Li, Yao-Wen Chang, Chia-Lin Yang National Taiwan.
Po-Wei Lee, Chung-Wei Lin, Yao-Wen Chang, Chin-Fang Shen, Wei-Chih Tseng NTU &Synopsys An Efficient Pre-assignment Routing Algorithm for Flip-Chip Designs.
An Efficient Linear Time Triple Patterning Solver Haitong Tian Hongbo Zhang Zigang Xiao Martin D.F. Wong ASP-DAC’15.
TSV-Constrained Micro- Channel Infrastructure Design for Cooling Stacked 3D-ICs Bing Shi and Ankur Srivastava, University of Maryland, College Park, MD,
PARR:Pin Access Planning and Regular Routing for Self-Aligned Double Patterning XIAOQING XU BEI YU JHIH-RONG GAO CHE-LUN HSU DAVID Z. PAN DAC’15.
Simultaneous Analog Placement and Routing with Current Flow and Current Density Considerations H.C. Ou, H.C.C. Chien and Y.W. Chang Electronics Engineering,
Routability-driven Floorplanning With Buffer Planning Chiu Wing Sham Evangeline F. Y. Young Department of Computer Science & Engineering The Chinese University.
LEMAR: A Novel Length Matching Routing Algorithm for Analog and Mixed Signal Circuits H. Yao, Y. Cai and Q. Gao EDA Lab, Department of CS, Tsinghua University,
1 NTUplace: A Partitioning Based Placement Algorithm for Large-Scale Designs Tung-Chieh Chen 1, Tien-Chang Hsu 1, Zhe-Wei Jiang 1, and Yao-Wen Chang 1,2.
System in Package and Chip-Package-Board Co-Design
High-Performance Global Routing with Fast Overflow Reduction Huang-Yu Chen, Chin-Hsiung Hsu, and Yao-Wen Chang National Taiwan University Taiwan.
Congestion Analysis for Global Routing via Integer Programming Hamid Shojaei, Azadeh Davoodi, and Jeffrey Linderoth* Department of Electrical and Computer.
Effective Linear Programming-Based Placement Techniques Sherief Reda UC San Diego Amit Chowdhary Intel Corporation.
Dept. of Electronics Engineering & Institute of Electronics National Chiao Tung University Hsinchu, Taiwan ISPD’16 Generating Routing-Driven Power Distribution.
6/19/ VLSI Physical Design Automation Prof. David Pan Office: ACES Placement (3)
2 University of California, Los Angeles
Presentation transcript:

Meng-Kai Hsu, Sheng Chou, Tzu-Hen Lin, and Yao-Wen Chang Electronics Engineering, National Taiwan University Routability Driven Analytical Placement for Mixed-Size Circuit Designs

Outline Introduction Preliminaries Proposed algorithm Experimental results Conclusion

Introduction mixed-size circuit designs which integrate a large number of pre-designed macros (e.g., embedded memories, IP blocks) and standard cells with very different sizes have become a mainstream for modern circuit designs. Considering routability during placement is of particular significance for modern mixed-size circuit designs with very large-scale interconnections

Contribution A new routability-driven analytical placement algorithm pin density the density of pins the routing directions of the pins routing overflow optimization A novel sigmoid function based overflow refinement method macro porosity consideration a new virtual macro expansion technique A routability-driven legalization and a detailed placement technique are proposed

Preliminaries Analytical Placement Framework The circuit placement problem can be formulated as a hypergraph = (,) placement problem. vertices = { 1, 2,..., } represent blocks hyperedges = { 1, 2,..., } represent nets and be the and coordinates of the center of block Two type blocks pre-placed blocks and movable blocks

Preliminaries Analytical Placement Framework We intend to determine the optimal positions of movable blocks so that the target cost (e.g., wirelength) is minimized and there is no overlap among blocks. The placement problem is usually solved in three steps: (1) global placement (2) legalization (3) detailed placement Generally, global placement has the most crucial impact on the overall

Preliminaries Analytical Placement Framework the global placement problem can be formulated as a constrained minimization problem as follows: (x, y) is the wirelength function (x, y) is the potential function that is the total area of movable blocks in bin is the maximum allowable area of movable blocks in bin

Preliminaries Analytical Placement Framework Equation (1) can be solved by the quadratic penalty method, implying that we solve a sequence of unconstrained minimization problems of the form solve the unconstrained problem in Equation (2) by the conjugate gradient (CG) method

Preliminaries Congestion Estimation The global routing problem is often solved with a grid graph model After dividing the routing region into uniform and non- overlapping regions called G-cells, each G-cell is denoted as a node, and two adjacent G-cells are connected by a routing edge. the capacity of a routing edge denotes the number of routing tracks that are available for nets crossing the corresponding boundary

Preliminaries Congestion Estimation Since the exact routing is unknown during placement, routability is an abstract concept. In this paper, we adopt the L-shaped probabilistic routing model since it is efficient and can produce sufficiently accurate estimation for routing congestion To estimate the routing congestion, nets are first decomposed into 2-pin nets by FLUTE then each 2-pin net is routed by upper-L and lower-L patterns with 50% probability for each direction.

The proposed algorithm The proposed algorithm consists of three stages: routability-driven global placement with pin density control, routability-driven legalization with routing congestion optimization, and routability-driven detailed placement

The proposed algorithm Routability-Driven Global Placement three aspects: (1) pin density, (2) routing overflow optimization (3) macro porosity consideration There are two stages in the multilevel framework: (1) the coarsening stage, and first-choice (FC) clustering algorithm (2) the uncoarsening stage the placement problem in Equation (2) is solved from the coarsest level to the finest level.

The proposed algorithm Routability-Driven Global Placement Pin Density Control

The proposed algorithm Routability-Driven Global Placement Pin Density Control To control the total number of pins in a G-cell formulate pin density penalties in the density constraints in Equation (1) (x, y) is the pin density in bin, which is the ratio between the total number of pins in b and the total number of allowed pins in each bin is the total movable area for placement By subtracting the maximum potential of a bin by its pin density penalty, pin density of a G-cell is the summation of pin densities on its corresponding routing edges.

Routability Optimization Congestion Removal congested region identification build a congestion map by using L-shaped probabilistic routing and calculate the routing overflow of each bin. adaptive base potential modification If the overflow of a bin is smaller than the average, we slightly reduce the base potential. On the contrary, if the overflow of a bin is larger than the average, we reduce the base potential more aggressively Gaussian filtering nonlinear optimization optimize the objective in Equation (2) subject to the modified base potentials

Routability Optimization Overflow Refinement a nonlinear formulation based on L-shaped probabilistic routing decompose each multi-pin net into 2-pin nets by FLUTE Then, we optimize the overflow by solving a constrained minimization problem of the form denotes the expected usage of routing edge e denotes the routing capacity of the routing edge

Routability Optimization Overflow Refinement In order to represent the equation of in terms of block positions, we first define a 0-1 logic function (,, ) as follows For a vertical edge from (, ) to (, e ), its expected usage is defined as: ( 1 (), 1 ()) and ( 2 (), 2 ()) are the coordinates of the connected pins of a two-pin net

Routability Optimization Overflow Refinement Since the 0-1 logic function (,, ) is neither smooth nor differentiable, we propose to use a sigmoid function to make the function differentiable is a quite expensive operation in practice Therefore, we propose to use a quadratic sigmoid function in our analytical framework: is the reciprocal of the G-cell size

Routability Optimization Overflow Refinement With the quadratic sigmoid function, we can define the smoothed 0-1 logic function as follows ˆ(− ) transforms the condition < while ˆ(− ) transforms the condition <. quadratic penalty method overall nonlinear formulation:

Routability Optimization Virtual Macro Expansion For modern mixed-size circuit designs, macro porosity brings significant challenges for routability-driven placement the number of blocks placed near macros should be reduced to improve the routability expand the original boundaries of macros during placement virtually to reserve spaces near macros for global routing The expansion ratio is then defined as is the metal blockage ratio of a macro is the fraction of whitespace

Routability-Driven Legalization removes all overlaps of a given global placement result Consider routing congestion of candidate positions for legalizing cells minimum displacement with minimum congestion cost

Routability-Driven Detailed Placement Revise cell shifting and cell swapping (1) routability-driven cell matching find a minimum weighted matching of cells and placement locations within a selected window The matching cost is evaluated as a weighted sum of total overflow and wirelength: : total overflow : HPWL is a user-specified parameter Incremental update cost (2) routability-driven cell swapping. selects adjacent cells in a single placement row and enumerates all possible permutations of these cells to find the minimum total overflow

EXPERIMENTAL RESULTS

Conclusions This paper has presented a novel routability-driven analytical placement framework for mixed-size circuit designs Experimental results have shown that our algorithm can achieve the best average overflow and routed wirelength, compared with the participating teams for the 2011 ACM ISPD Routability-Driven Placement Contest.