Spitzer/IRAC Observations of the Active Merger Remnant NGC 6240 Stephanie Bush Advisor: Giovanni Fazio Collaborators: Zhong Wang & Margarita Karovska.

Slides:



Advertisements
Similar presentations
To measure the brightness distribution of galaxies, we must determine the surface brightness of the resolved galaxy. Surface brightness = magnitude within.
Advertisements

207th AAS Meeting Washington D.C., 8-13 January The Spitzer SWIRE Legacy Program Spitzer Wide-Area Infrared Extragalactic Survey Mari Polletta (UCSD)
Impact of Jet Feedback on H 2 and Star Formation in Radio Galaxies Patrick Ogle (Caltech, Spitzer Science Center) R. Antonucci, C. Leipski, Phil Appleton,
Luminous Infrared Galaxies with the Submillimeter Array: Probing the Extremes of Star Formation Chris Wilson (McMaster), Glen Petitpas, Alison Peck, Melanie.
Spitzer Reveals Activities of Supermassive Black Holes in Elliptical Galaxies Qiusheng Gu Nanjing University in collaboration with J.-S. Huang (CfA), G.
Properties of high redshift galaxies from 24 μm images Paola Santini Università di Roma “La Sapienza” Osservatorio Astronomico di Roma Scuola nazionale.
Gas and Star Formation in the Circinus Galaxy Bi-Qing For ( 傅碧晴 ) SIEF John Stocker Fellow ICRAR / University of Western Australia Baerbel Koribalski (CSIRO.
The SMA CO(6-5) & 690 GHz Continuum Observations of Arp 220 Satoki Matsushita (ASIAA) D. Iono (CfA), C.-Y. Chou (ASIAA), M. Gurwell (CfA), P.-Y. Hsieh.
Eddington limited starbursts in the central 10pc of AGN Richard Davies, Reinhard Genzel, Linda Tacconi, Francisco Mueller Sánchez, Susanne Friedrich Max.
The MIR Template Spectrum of Star-Forming Galaxies A SINGS Perspective JD Smith.
UV to Mid-IR SEDs of Low Redshift Quasars Zhaohui Shang (Tianjin Normal University/University of Wyoming) Michael Brotherton, Danny Dale (University of.
The SIRTF SWIRE Survey SWIRE is a shallow/moderate depth survey of ~70 sq. degrees in all 7 SIRTF imaging bands 5  sensitivities: 17.5 mJy 160  m 2.75.
Star-Formation in Close Pairs Selected from the Sloan Digital Sky Survey Overview The effect of galaxy interactions on star formation has been investigated.
Early results from the IRS Jim Houck and the IRS team - AAS Denver 6/1/04.
Recent Imaging Results from SINGS G. J. Bendo, R. C. Kennicutt, L. Armus, D. Calzetti, D. A. Dale, B. T. Draine, C. W. Engelbracht, K. D. Gordon, A. D.
MIR Diagnostics and Molecular Gas in Local Luminous Infrared Galaxies Andreea Petric Collaborators: L. Armus, J. Howell, J. Surace (SSC/Caltech), A. Evans.
Hubble Space Telescope Images of Post-Starburst Quasars Michael S. Brotherton, S. Cales, R. Ganguly, Z. Shang (University of Wyoming) G. Canalizo (University.
IR Spectral Diagnostics of z=2 Dust Obscured Galaxies (DOGs) Jason Melbourne (Caltech) B.T. Soifer, Lee Armus, Keith Matthews, Vandana Desai, Arjun Dey,
The SEDs of Interacting Galaxies Lauranne Lanz Nicola Brassington, Andreas Zezas, Howard A. Smith, Matthew L. N. Ashby, Elisabete da Cunha, Christopher.
Jarrett 2005 Extended Source Calibration T. Jarrett & M. Pahre (IPAC/SSC/CfA) IRAC GTO Workshop (CfA) Sep 29, 2005
Star Formation Enhancement in Close Pairs Each galaxy pair consists of a primary galaxy and a companion - we examine the specific star- formation rate.
The Spitzer View of Jet-ISM Interactions Patrick Ogle Ski Antonucci, Phil Appleton, David Whysong, & Christian Leipski.
Astrophysics from Space Lecture 8: Dusty starburst galaxies Prof. Dr. M. Baes (UGent) Prof. Dr. C. Waelkens (KUL) Academic year
An Initial Look at the FIR-Radio Correlation within Galaxies using Spitzer Eric Murphy (Yale) Co-Investigators George Helou (SSC/IPAC) Robert Braun (ASTRON)
The potential of JWST to Measure the Mass- Loss Return from Stars to Galaxies Acknowledgements: Funding from NASA-ADAP, Herschel/HERITAGE, and NAG5 grants.
Spitzer Imaging of nearby ULIRGs and their Progeny: Merger-Formed Ellipticals Jason Surace (Spitzer Science Center) ULIRGs: Z.Wang, S.Willner, H.Smith,
The Evolution of Quasars and Massive Black Holes “Quasar Hosts and the Black Hole-Spheroid Connection”: Dunlop 2004 “The Evolution of Quasars”: Osmer 2004.
Effects of Dust on the Observed SEDs of Galaxies Andrew Schurer INAF/SISSA & MAGPOP.
Black Hole Growth and Galaxy Evolution Meg Urry Yale University.
Modern Quasar SEDs Zhaohui Shang ( Tianjin Normal University ) Kunming, Feb
RADIO OBSERVATIONS IN VVDS FIELD : PAST - PRESENT - FUTURE P.Ciliegi(OABo), Marco Bondi (IRA) G. Zamorani(OABo), S. Bardelli (OABo) + VVDS-VLA collaboration.
SPIRE-FTS spectrum of Arp 220, Mrk 231 and NGC Bright CO (J = 4-3 to J = 13-12), water, and atomic fine-structure line transitions are labeled. The.
Fueling QSOs: The Relevance of Mergers Nicola Bennert University of California Riverside in collaboration with Gabriela Canalizo (UCR), Bruno Jungwiert.
D. B. Sanders Institute for Astronomy, University of Hawaii Gas-Rich Mergers and the origin of nuclear starbursts and AGN The Dusty and Molecular Universe:
Barred Galaxies Chang, Seo-Won. Contents 1.Overview 2.Vertical structure of bars 3.Rings in SB galaxies 4.Dust lanes in SB galaxies 5.Lop-sidedness in.
Dusty disks in evolved stars?
Starburst in NGC 6090 Junzhi Wang Purple mountain observatory Collaborators: Qizhou Zhang, Zhong Wang, Giovanni G. Fazio, Paul T. P. Ho (CFA) Yuefang Wu.
Warm Molecular Gas in Galaxies Rui-Qing Mao ( 毛瑞青 ) (Purple Mountain Observatory, Nanjing) C. Henkel (MPIfR) R. Mauersberger (IRAM) Dinh-Van-Trung (ASIAA)
Gas stripping and its Effect on the Stellar Populations of Virgo Cluster Galaxies Hugh H. Crowl UMass with Jeff Kenney (Yale)‏ Jacqueline van Gorkom (Columbia),
An Evolutionary Model of Submillimeter Galaxies Sukanya Chakrabarti NSF Fellow CFA.
The infrared extinction law in various interstellar environments 1 Shu Wang 11, 30, 2012 Beijing Normal University mail.bnu.edu.cn.
Delphine Marcillac Moriond 2005 When UV meets IR... 1 IR properties of distant IR galaxies Delphine Marcillac (PhD student) Supervisor : D. Elbaz In collaboration.
Astro 641 AGN Mapping the Evolution of AGN More material: This lecture!
Investigations of dust heating in M81, M83 and NGC 2403 with Herschel and Spitzer George J. Bendo Very Nearby Galaxies Survey.
How do galaxies accrete their mass? Quiescent and star - forming massive galaxies at high z Paola Santini Roman Young Researchers Meeting 2009 July 21.
Color Maps of the Ohio State University Bright Spiral Galaxy Survey Melissa Butner, Austin Peay State University Susana Deustua, advisor.
Subaru AO high-spatial-resolution IR K- and L-band search for buried dual AGNs in merging galaxies Masatoshi Imanishi ( 今西昌俊 ) NAOJ/Subaru Telescope Imanishi+14.
Black hole accretion history of active galactic nuclei 曹新伍 中国科学院上海天文台.
A multi-band view on the evolution of starburst merging galaxies A multi-band view on the evolution of starburst merging galaxies Yiping Wang (王益萍) Purple.
5-9th September 2011 SED2011 conference A new model for the infrared emission of IRAS F Andreas Efstathiou European University Cyprus.
How do galaxies accrete their mass? Quiescent and star - forming massive galaxies at high z Paola Santini THE ORIGIN OF GALAXIES: LESSONS FROM THE DISTANT.
Starburst galaxies are important constituents of the universe at all accessible redshifts. However, a detailed and quantitative understanding of the starburst.
Nearby mergers: ellipticals in formation? Thorsten Naab University Observatory, Munich October 4th, 2006 From the Local Universe to the Red Sequence Space.
3-8 µm diagnostics of starbursts and AGNs in the local and high-z Universe Guido Risaliti INAF - Osservatorio Astrofisico di Arcetri & Harvard-Smithsonian.
KASI Galaxy Evolution Journal Club A Massive Protocluster of Galaxies at a Redshift of z ~ P. L. Capak et al. 2011, Nature, in press (arXive: )
Super star clusters Super star clusters and and star-formation in interacting galaxies star-formation in interacting galaxies Zara RANDRIAMANAKOTO Zara.
9 Gyr of massive galaxy evolution Bell (MPIA), Wolf (Oxford), Papovich (Arizona), McIntosh (UMass), and the COMBO-17, GEMS and MIPS teams Baltimore 27.
The optical morphologies of the 2Jy sample of southern radio galaxies Cristina Ramos Almeida & Clive N. Tadhunter University of Sheffield.
Why is the BAT survey for AGN Important? All previous AGN surveys were biased- –Most AGN are ‘obscured’ in the UV/optical –IR properties show wide scatter.
T. J. Cox Phil Hopkins Lars Hernquist + many others (the Hernquist Mafia) Feedback from AGN during Galaxy Mergers.
Searching for circumnuclear molecular torus in Seyfert galaxy NGC 4945
Studying Nearby Starbursts with HST
Fueling QSOs: The Relevance of Mergers
Understanding Local Luminous Infrared Galaxies in the Herschel Era
Evidence for a Population of high redshift Submm Galaxies
The X-ray Evolution of Young Post-Merger
The Stellar Population of Metal−Poor Galaxies at z~1
The dust attenuation in the galaxy merger Mrk848
Millimeter Megamasers and AGN Feedback
The Nuclear Regions of Nearby Galaxies
Presentation transcript:

Spitzer/IRAC Observations of the Active Merger Remnant NGC 6240 Stephanie Bush Advisor: Giovanni Fazio Collaborators: Zhong Wang & Margarita Karovska

Why are we interested in nearby Interacting Galaxies? Galaxy interactions affect a wide range of astrophysical applications: –Galaxies - galaxy evolution –Cosmology - epoch of galaxy collisions z~2-3 –Star formation - Different process than in quiescent galaxies: shocks, starbursts, etc…. Outstanding Questions: – – How do galaxies form? – – Can spiral-spiral mergers create the detailed structure of elliptical? – – How are active galaxy stages related to one another? – – How does small scale star formation relate to the observed global star formation in galaxies?

1985: What is that thing? IRAS observed hundreds of objects that emit more in the infrared than in all other wavelengths combined. LIRGs: L IR > L  ULIRGs: L IR > L  (Sanders & Mirabel 1996)

2007: What (specifically) is that thing? Possibilities: –Starburst –AGN –Combination Most likely evolves through these stages How do we determine what stage a remnant is at? Hopkins et al. 2006

NGC 6240 z =.02, d = 98 Mpc Multiple tidal features LIRG (L IR = 7.1 x L  ), transition object! Double Nuclei (optical, NIR, X-Ray) Outflows! (H , CO, X-Ray) HST B: NASA Chandra X-Ray: NASA HST - H  : NASA

Hopkins et al. Merger Driven Active Galaxy Evolution Hopkins et al. 2007

Objectives Use IRAC photometry to determine: –the distribution of stars and dust –AGN/starburst contribution Use this to comment on stage of the merger

Advantages of Spitzer/IRAC Angular resolution (better than ISO by 2-3x) Traces –Old stars (3.6  m) –Polycyclic Aromatic Hydrocarbons (type of dust, 8.0  m) Dust Peak Stellar Peak PAH Features IRAC Bands

Mid-IR Classification Techniques Global SEDs (e.g. Lacy et al. 2004) Local Analysis (e.g. Smith et al. 2005) Log (S 5.8 /S 3.6 ) Log (S 8.0 /S 4.5 )

Observations & Methodology 10.8 mins exposure per pixel PRF FWHM ≤ 2.0” (950 pc) Reduced with IRACproc (Schuster 2007) Bright source corrected (Carey 2007) Photometry –Look at radial changes with elliptical isophotes –Global and Nuclear SEDs –Use smaller apertures to examine regional differences

ACS B-Band and IRAC 3-Color Bush, S. et al Nucleus North South North South SE NE SE NE PRF Spikes Blue  m Green  m Red  m

IRAC 1 (3.6  m) & 2 (4.5  m) on B Dust Stars Bush, S. et al. 2007

IRAC 3 (5.8  m) & 4 (8.0  m) on B Dust Stars Bush, S. et al. 2007

Elliptical Photometry At a given semi-major axis: e, pa, x0, y0 allowed to vary Flux constant at large radii (enclosing total flux) Longer wavelengths  more concentrated flux! Bush, S. et al 2007 Blue  m Yellow  m Green  m Red  m Enclosed Normalized Intensity

Color-Color Diagram Red objects - upper right Blue objects - lower left Dashed lines are Lacy et. al 2004 empirical AGN region Ratios change as a function of radius Colors agree with obscured AGN, especially in the nucleus  Large dust concentration in nucleus Bush, S. et al. 2007

Spectral Energy Distribution Derived from outer elliptical isophote (sma 43”, kpc) Matches well with ISO, IRS (Armus et. al 2006) Bush, S. et al IRS IRAC

Comparing the SED Global Nucleus M 82: Starburst Arp 220: ULIRG and late merger NGC 1068: AGN M 31: Quiescent edge on spiral Bush, S. et al Intensity (Jy) rest (  m) rest (  m)

Estimating AGN and Starburst Contributions Nucleus: –30% AGN –70% starburst –Consistent with ISO spectra estimates, slightly high for IRS spectra estimates (20-25% AGN) Global –45% Starburst –55% Quiescent Bush, S. et al Global Nucleus Intensity (Jy) rest (  m) rest (  m)

Regional Photometry More detailed way of determining the distribution of stars and dust Need Spitzer/IRAC resolution to do this! 4.3”, 2 kpc radius apertures placed on remnant features by eye Look for trends Bush, S. et al. 2007

Regional Photometry Color -Color Yellow - foreground stars Nucleus reddest point Always gets bluer with radius Bush, S. et al. 2007

Structure: Elliptical or Disky? Disk profile fits in outer regions (red - north blue - south) Both! - Not relaxed, disk remnants in outer regions 3.6 micron allows us to trace structure of old stars R 1/4 law doesn’t fit well  not relaxed! Bush, S. et. al 2007 Bush, S. et al. 2007

Structure: Multi-wavelength X-Ray seems to form an “X” around the major axis of NGC 6240 Bush, S. et al. 2007

NGC 6240 Merger History NGC 6240 Merger History Hopkins et al Clues: –Obscured AGN  Dust in nucleus, not in blowout phase! Supported by X-ray (Komossa et al. 2003) –Portions of a disk remain  not fully relaxed! Supported by NIR (Max et al. 2005) –Tidal tails, outflows

Conclusions: NGC 6240 Obscured AGN Not relaxed, disk remnants in outer regions 30% AGN contribution to nuclear emission 45% Starburst contribution to total emission Young, pre-blowout, early in evolution Agrees with other observations and theoretical merger evolution Obscured AGN Not relaxed, disk remnants in outer regions 30% AGN contribution to nuclear emission 45% Starburst contribution to total emission Young, pre-blowout, early in evolution Agrees with other observations and theoretical merger evolution

Conclusions: Detailed IRAC Studies of Mergers and the Future IRAC data dissects the structure of galaxies -- this is particularly important in merger remnants where structure is complex. Large samples of simulations of interacting galaxies are needed to match these characteristics and constrain NGC 6240’s history.

References Armus, L., et al. 2006, ApJ, 640, 204 Bush, Wang, Karovska and Fazio in preparation Carey, S Private communication Hopkins, P.F., Cox, T.J., Keres, D., & Hernquist, L. 2007, ArXiv e- prints, 706, arXiv: Hopkins, P.F., Hernquist, L., Cox, T.J., Di Matteo, T., Robertson, B., & Springel, V. 2006, ApJS, 163, 1 Komossa, S., Burwitz, V., Hasinger, G., Predehl, P., Kaastra, J.~S., & Ikebe, Y. 2003, ApJL 582, L15 Lacy, M., et al. 2004, ApJS, 154, 166 Max, C.E., Canalizo, G., Macintosh, B.A., Raschke, L., Whysong, D., Antonucci, R., & Schneider, G. 2005, ApJ, 621, 738 Sanders, D.B. & Mirabel, I.F. 1996, ARAA, 34, 749 Schuster, M.T., Marengo, M., & Patten, B.~M. 2006, procspie, 6270, Smith, B.J., Struck, C., Appleton, P.N., Charmandaris, V., Reach, W., & Eitter, J.J. 2005, AJ, 130, 2117

Image Credits NGC 6240 ACS: NASA MAST IRAS: _sat.html NGC 6240 Halpha: e_astronews_04Jan.htm NGC 6240 X-Ray: NASA/CXC/MPE/S. Komossa et al. Spitzer Telescope: 074_space.htm