Introduction to Black Hole Thermodynamics Satoshi Iso (KEK)

Slides:



Advertisements
Similar presentations
The Schrödinger Wave Equation 2006 Quantum MechanicsProf. Y. F. Chen The Schrödinger Wave Equation.
Advertisements

Stellar Structure Section 6: Introduction to Stellar Evolution Lecture 18 – Mass-radius relation for black dwarfs Chandrasekhar limiting mass Comparison.
F. Debbasch (LERMA-ERGA Université Paris 6) and M. Bustamante, C. Chevalier, Y. Ollivier Statistical Physics and relativistic gravity ( )
Wald’s Entropy, Area & Entanglement Introduction: –Wald’s Entropy –Entanglement entropy in space-time Wald’s entropy is (sometimes) an area ( of some metric)
Douglas Singleton, CSU Fresno and PFUR
ASYMPTOTIC STRUCTURE IN HIGHER DIMENSIONS AND ITS CLASSIFICATION KENTARO TANABE (UNIVERSITY OF BARCELONA) based on KT, Kinoshita and Shiromizu PRD
Extremal Single-charge Small Black holes Aninda Sinha DAMTP, Cambridge University, UK hep-th/ (to appear in CQG) with Nemani Suryanarayana(Perimeter),
The attractor mechanism, C-functions and aspects of holography in Lovelock gravity Mohamed M. Anber November HET bag-lunch.
Gerard ’t Hooft Spinoza Institute Utrecht University CMI, Chennai, 20 November 2009 arXiv:
Microscopic entropy of the three-dimensional rotating black hole of BHT massive gravity of BHT massive gravity Ricardo Troncoso Ricardo Troncoso In collaboration.
Entanglement in Quantum Critical Phenomena, Holography and Gravity Dmitri V. Fursaev Joint Institute for Nuclear Research Dubna, RUSSIA Banff, July 31,
Black Holes Written for Summer Honors Black Holes Massive stars greater than 10 M  upon collapse compress their cores so much that no pressure.
Quantum Entanglement and Gravity Dmitri V. Fursaev Joint Institute for Nuclear Research and Dubna University “Gravity in three dimensions”, ESI Workshop,
Coupled Dark Energy and Dark Matter from dilatation symmetry.
General Relativity Physics Honours 2007 A/Prof. Geraint F. Lewis Rm 557, A29 Lecture Notes 7.
Black Holes: The Information Paradox Andrew Buccilli PH2010 Sophomore Seminar October 26, 2007.
The 2d gravity coupled to a dilaton field with the action This action ( CGHS ) arises in a low-energy asymptotic of string theory models and in certain.
Strings and Black Holes David Lowe Brown University AAPT/APS Joint Fall Meeting.
Black Holes Matthew Trimble 10/29/12.
Entropy localization and distribution in the Hawking radiation Horacio Casini CONICET-Intituto Balseiro – Centro Atómico Bariloche.
Lamb shift in Schwarzschild spacetime Wenting Zhou & Hongwei Yu Department of Physics, Hunan Normal University, Changsha, Hunan, China.
Williams Research Gravity Pharis E. Williams 19 th Natural Philosophy Alliance Albuquerque, NM July, 2012.
Forming Nonsingular Black Holes from Dust Collapse by R. Maier (Centro Brasileiro de Pesquisas Físicas-Rio de Janeiro) I. Damião Soares (Centro Brasileiro.
Holographic Description of Quantum Black Hole on a Computer Yoshifumi Hyakutake (Ibaraki Univ.) Collaboration with M. Hanada ( YITP, Kyoto ), G. Ishiki.
BLACK HOLES and WORMHOLES PRODUCTION AT THE LHC I.Ya.Aref’eva Steklov Mathematical Institute, Moscow.
Black Holes, Entropy, and Information Gary Horowitz UCSB.
Black Holes Escape velocity Event horizon Black hole parameters Falling into a black hole.
Einstein Field Equations and First Law of Thermodynamics Rong-Gen Cai (蔡荣根) Institute of Theoretical Physics Chinese Academy of Sciences.
Shear viscosity of a highly excited string and black hole membrane paradigm Yuya Sasai Helsinki Institute of Physics and Department of Physics University.
The false vacuum bubble, the true vacuum bubble, and the instanton solution in curved space 1/23 APCTP 2010 YongPyong : Astro-Particle and Conformal Topical.
On the exotic BTZ black holes Baocheng Zhang Based on papers PRL 110, ; PRD 88, Coauthor : P. K. Townsend KITPC,
Gaussian Brane and Open String Tachyon Condensation Shinpei Kobayashi ( RESCEU, The University of Tokyo ) Tateyama, Chiba Yoshiaki Himemoto.
Super Virasoro Algebras from Chiral Supergravity Ibaraki Univ. Yoshifumi Hyakutake Based on arXiv:1211xxxx + work in progress.
On Fuzzball conjecture Seiji Terashima (YITP, Kyoto) based on the work (PRD (2008), arXiv: ) in collaboration with Noriaki Ogawa (YITP)
Hawking radiation for a Proca field Mengjie Wang (王梦杰 ) In collaboration with Carlos Herdeiro & Marco Sampaio Mengjie Wang 王梦杰 Based on: PRD85(2012)
1 Black-Hole Thermodynamics PHYS 4315 R. S. Rubins, Fall 2009.
Hawking Radiation and Vacuum Polarization Sang Pyo Kim ( 金相杓 ) Kunsan Nat’l Univ. & YITP, Kyoto Univ. 竹原理論物理硏究會, June 06-08, 2011 [AS & NCU & NTHU & Kinki.
Hawking radiation as tunneling Baocheng Zhang Wuhan institute of Physics and Mathematics Chinese Academy of Sciences.
Comments on entanglement entropy in the dS/CFT correspondence Yoshiki Sato ( Kyoto U. ) PRD 91 (2015) 8, [arXiv: ] 9th July.
Black Holes and the Fluctuation Theorem Susumu Okazawa ( 総研大, KEK) with Satoshi Iso and Sen Zhang, arXiv: work in progress.
KERR BLACK HOLES Generalized BH description includes spin –Later researchers use it to predict new effects!! Two crucial surfaces –inner surface = horizon.
Klein-Gordon Equation in the Gravitational Field of a Charged Point Source D.A. Georgieva, S.V. Dimitrov, P.P. Fiziev, T.L. Boyadjiev Gravity, Astrophysics.
Entanglement in Quantum Gravity and Space-Time Topology
Yoshinori Matsuo (KEK) in collaboration with Hikaru Kawai (Kyoto U.) Yuki Yokokura (Kyoto U.)
On String Theory Duals of Lifshitz-like Fixed Point Tatsuo Azeyanagi (Kyoto University) Based on work arXiv: (to appear in JHEP) with Wei Li (IPMU)
Holographic Description of Quantum Black Hole on a Computer Yoshifumi Hyakutake (Ibaraki Univ.) Collaboration with M. Hanada ( YITP, Kyoto ), G. Ishiki.
1 Bhupendra Nath Tiwari IIT Kanpur in collaboration with T. Sarkar & G. Sengupta. Thermodynamic Geometry and BTZ black holes This talk is mainly based.
The effect of Gravity on Equation of State Hyeong-Chan Kim (KNUT) FRP Workshop on String Theory and Cosmology 2015, Chungju, Korea, Nov ,
Gravity effects to the Vacuum Bubbles Based on PRD74, (2006), PRD75, (2007), PRD77, (2008), arXiv: [hep-th] & works in preparation.
Hawking radiation as tunneling from squashed Kaluza-Klein BH Ken Matsuno and Koichiro Umetsu (Osaka city university) (Kyoto sangyo university) Phys. Rev.
Based on Phys. Rev. D 92, (R) (2015) 中科大交叉学科理论研究中心
On the exotic BTZ black holes Baocheng Zhang Based on papers PRL 110, ; PRD 88, Collaborated with Prof. P. K. Townsend 郑州,
Gauge/gravity duality in Einstein-dilaton theory Chanyong Park Workshop on String theory and cosmology (Pusan, ) Ref. S. Kulkarni,
DPG Conference, Hamburg
Quantum Mechanical Models for Near Extremal Black Holes
Origin of Hawking radiation
Origin of Hawking radiation and firewalls
Extreme measures for extremal black holes
Scale vs Conformal invariance from holographic approach
Unitarity constraints on h/s
Geometric aspects of extremal Kerr Black Hole entropy E M Howard
Thermodynamic Volume in AdS/CFT
Charged black holes in string-inspired gravity models
General Relativity Physics Honours 2006
Solutions of black hole interior, information paradox and the shape of singularities Haolin Lu.
Based on the work submitted to EPJC
Hawking Radiations and Anomalies
Can we probe quantum structure of space-time by black holes?
Traversable wormholes in 4 dimensions
Graviton Emission in The Bulk from a Higher Dimensional Black Hole
Presentation transcript:

Introduction to Black Hole Thermodynamics Satoshi Iso (KEK)

Plan of the talk [1] Overview of BH thermodynamics ・ causal structure of horizon ・ Hawking radiation ・ stringy picture of BH entropy [2] Hawking radiation via quantum anomalies ・ universality of Hawking radiation [3] Conclusion ・ towards quantum nature of space-time

Pressure caused by nuclear fusion in the star stabilizes it against gravitational collapse. All nuclear fuel used up Massive stars end their lives by supernova explosion and the remnants become black holes. star [1] Overview of BH thermodynamics

No hair theorem Stationary black holes are characterized by 3 quantities. (M, Q, J) mass, charge, and angular momentum Q-taroo-Jiro

Schwarzschild black holes horizon radius: Curvature is singular at r=0 but nothing is singular at the horizon. Curvature:

Causal structure of horizon Null coordinates: Tortoise coordinate: r * r

Kruskal coordinates: surface gravity: r=const t r=0 II: BH IV: WH I: exterior region U V III U=0, V=0 at horizon U=0 future horizon V=0 past horizon regular at horizon

r H =2GM No one can come out of the horizon. BH mass always increases classically. Horizon area never decreases like entropy in thermodynamics. d A > 0 = Horizon is a null hypersurface.

Analogy with Thermodynamics Equilibrium Thermodynamics Black Hole 0th law T=const. 0th law κ=const. 1st law dE = T dS 1st law dM =κ/(8πG) dA 2nd law dS > 0 2nd law dA > 0 == Classical correspondence

Hawking radiation from black hole In 1974 Hawking found that black hole radiates. This really gave sense to the analogy with thermodynamics. Hawking temperature: Entropy of BH: They are quantum effects!

For BH with 10 solar mass T H ~ 6×10 K S BH ~ 10 k B very low temperature huge entropy cf. Entropy of sun ~ 10 58

In the classical limit, THTH 0 S BH ∞ Hawking radiation = universal quantum effect for matters in Black holes. BH entropy = universal quantum gravity effect (geometrical quantity)

-E E virtual pair creation of particles real pair creation E-E Hawking radiation BH Physical picture of Hawking radiation thermal spectrum with T

Derivation of Hawking radiation by Unruh for eternal BH

Hawking radiation reduces BH mass. Area decreases and 2nd law is violated. Generalized 2nd law S tot = S BH + S rad d S tot > 0 = Microscopic (statistical ) meaning of BH entropy? (1)Thermal Hawking radiation contradicts with the unitary evolution of quantum states.  information paradox (2) Microscopic understanding of BH entropy? needs quantum nature of space-time?

Basic idea to understand BH entropy in strings Strings: both of matters and space-time (graviton) are excitations of strings (4d) Newton constant G ~ (g s l s ) 2 r H =2GM string At strong coupling, string with mass M becomes BH when its Schwarzschild radius equals the string length. (2GM ~ l s) S = k B log N(M) =k B l s M/ h ~ k B (GM) / (h G) =S BH N(M) = exp (l s M/ h) 2

Extrapolation to strong coupling is not reliable. Instead of fundamental strings, we can use specific D-brane configurations. (cf. Wadia’s lecture) In this way, BH entropy can be understood microscopically in string theory. Furthermore Hawking radiation can be also understood as a unitary process of closed string emission from D-branes. (D1+D5+momentum along D1)

Once D-branes are in the horizon, they are invisible from outside the BH. Why are these d.o.f seen as entropy to an outside observer? Information paradox is not yet well understood. BH thermodynamics will be more universal phenomena irrespective of the details of quantum gravity formulation? Is everything understood in strings? No!

[2] Hawking radiation and quantum anomalies BH (1)Near horizon, each partial wave of d-dim quantum field behaves as d=2 massless free field. Quantum fields in black holes. Outgoing modes = right moving Ingoing modes = left moving Effectively 2-dim conformal fields Robinson Wilczek (05) Iso Umetsu Wilczek (06)

(2) Ingoing modes are decoupled once they are inside the horizon. These modes are classically irrelevant for the physics in exterior region. So we first neglect ingoing modes near the horizon. The effective theory becomes chiral in the two-dimensional sense. gauge and gravitational anomalies = breakdown of gauge and general coordinate invariance

(3) But the underlying theory is NOT anomalous. Anomalies must be cancelled by quantum effects of the classically irrelevant ingoing modes. ( ~ Wess-Zumino term) flux of Hawking radiation

Charged black hole (Ressner-Nordstrom solution). Metric and gauge potential r + : outer horizon r - : inner horizon Iso Umetsu Wilczek (06)

Near horizon, potential terms can be suppressed. Each partial wave behaves as d=2 conformal field.

For calculational convenience, we divide the exterior region into H and O. H: [r +, r + + ε] O: [r + + ε, ∞] First neglect the classically irrelevant ingoing modes in region H. H O ε BH outgoingingoing

Gauge current and gauge anomaly outer horizon ε The theory becomes chiral in H. Gauge current has anomaly in region H. consistent current We can define a covariant current by which satisfies OH

In region O, In near horizon region H, are integration constants. Current is written as a sum of two regions. where = current at infinity = value of consistent current at horizon consistent current

Variation of the effective action under gauge tr. Using anomaly eq. cancelled by WZ term Impose δW + δW’ =0 W’ = contribution from ingoing modes (WZ term)

・ Determination of We assume that the covariant current should vanish at horizon. Unruh vac. Reproduces the correct Hawking flux

Total current including ingoing modes near the horizon ingoing mode outgoing mode should be conserved!

EM tensor and Gravitational anomaly Under diffeo. they transform Effective d=2 theory contains background of graviton, gauge potential and dilaton. Ward id. for the partition function =anomaly

Gravitational anomaly consistent current covariant current In the presence of gauge and gravitational anomaly, Ward id. becomes non-universal

Solve component of Ward.id. (1) In region O (2) In region H Using (near horizon)

Variation of effective action under diffeo. (1) classical effect of background electric field (1)(2)(3) (2) cancelled by induced WZ term of ingoing modes (3) Coefficient must vanish.

Determination of We assume that the covariant current to vanish at horizon. since we can determine and therefore flux at infinity is given by Reproduces the flux of Hawking radiation

The derivation of Hawking radiation made use of only the very fundamental property of horizon. We have used only the following two horizon is null hypersurface ingoing modes at horizon can communicate with the exterior region only through anomaly Universality of Hawking radiation

[3] Conclusions geometrical quantum Do we really need details of Quantum gravity ? S BH can be calculated by various geometrical ways once we assume the temperature of the BH. The deepest mysteries of BH are Black hole entropy & information paradox

Euclidean method calculate partition function for BH by using Einstein action with a boundary term conical singularity method dependence of partition function on the deficit angle (related to temperature) Wald formula BH entropy as Noether charge surface integral of Noether current on horizon associated with general coordinate tr. Various geometrical ways to obtain S BH

But they cannot answer its microscopic origin. Some proposals ・ asymptotic symmetry number of general coordinate tr. that keep the asymptotic form of the metric invariant (successful in d=3 case) ・ near horizon conformal symmetry (Carlip) ・ ingoing graviton modes on the horizon may be relevant to the entropy

As blackbody radiation played an important role in discovering the quantum mechanics, black hole physics will play a similar role to understand the quantum geometry. Still there are many mysteries.