Supernova and GRB remnants and their GeV-TeV  -ray emission Kunihito Ioka (KEK) Peter Mészáros (IGC, Penn State) 1. GRB/Hypernova remnants ~ TeV unID.

Slides:



Advertisements
Similar presentations
(2) Profile of the Non-Thermal Filaments of SNRs =>High Energy Particle Acceleration =>High Energy Particle Acceleration In all the SNRs & GC Non Thermal.
Advertisements

Klein-Nishina effect on high-energy gamma-ray emission of GRBs Xiang-Yu Wang ( 王祥玉) Nanjing University, China (南京大學) Co-authors: Hao-Ning He (NJU), Zhuo.
The Galactic diffuse emission Sabrina Casanova, MPIK Heidelberg XXth RENCONTRES DE BLOIS 18th - 23rd May 2008, Blois.
High-energy photon and particle emission from GRBs/SNe Xiang-Yu Wang Nanjing University, China Co-authors: Zhuo Li (Weizmann), Soebur Razzaque (PennState),
Gamma-Ray Bursts & High Energy Astrophysics Kunihito Ioka (KEK) 井岡 邦仁.
Modeling photon and neutrino emission from the supernova remnant RX J  Constraints from geometry  Constraints from spectral energy distribution.
Supernovae Supernova Remnants Gamma-Ray Bursts. Summary of Post-Main-Sequence Evolution of Stars M > 8 M sun M < 4 M sun Subsequent ignition of nuclear.
The Fermi Bubbles as a Scaled-up Version of Supernova Remnants and Predictions in the TeV Band YUTAKA FUJITA (OSAKA) RYO YAMAZAKI (AOYAMA) YUTAKA OHIRA.
2009 July 8 Supernova Remants and Pulsar Wind Nebulae in the Chandra Era 1 Modeling the Dynamical and Radiative Evolution of a Pulsar Wind Nebula inside.
X-ray observations of Dark Particle Accelerators Hiro Matsumoto (KMI, Nagoya University) 1.
From Progenitor to Afterlife Roger Chevalier SN 1987AHST/SINS.
Neutrinos as probes of ultra-high energy astrophysical phenomena Jenni Adams, University of Canterbury, New Zealand.
Low-luminosity GRBs and Relativistic shock breakouts Ehud Nakar Tel Aviv University Omer Bromberg Tsvi Piran Re’em Sari 2nd EUL Workshop on Gamma-Ray Bursts.
X-ray observations of Dark Particle Accelerators Hiro Matsumoto (KMI, Nagoya University) 1.
Science Drivers for the Next Generation VHE Telescope(s?) G. Sinnis with much help from C. Dermer, J. Buckley, H. Krawczynski, S. LeBohec, R. Ong, M. Pohl,
Diffuse Gamma-Ray Emission Su Yang Telescopes Examples Our work.
Gamma-Ray Bursts (GRBs) and collisionless shocks Ehud Nakar Krakow Oct. 6, 2008.
GLAST Science LunchDec 1, 2005 E. do Couto e Silva 1/21 Can emission at higher energies provide insight into the physics of shocks and how the GRB inner.
Neutron Star Environment: from Supernova Remnants to Pulsar Wind Nebulae Stephen C.-Y. Ng McGill University Special thanks to Pat Slane for some materials.
A Radio Perspective on the GRB-SN Connection Alicia Soderberg May 25, 2005 – Zwicky Conference.
Kick of neutron stars as a possible mechanism for gamma-ray bursts Yong-Feng Huang Department of Astronomy, Nanjing University.
G.E. Romero Instituto Aregntino de Radioastronomía (IAR), Facultad de Ciencias Astronómicas y Geofísicas, University of La Plata, Argentina.
Ehud Nakar California Institute of Technology Gamma-Ray Bursts and GLAST GLAST at UCLA May 22.
Gamma Ray Bursts and LIGO Emelie Harstad University of Oregon HEP Group Meeting Aug 6, 2007.
The ANTARES Neutrino Telescope Mieke Bouwhuis 27/03/2006.
GLAST Workshop (Cambridge, MA, 6/21/07) Patrick Slane (CfA) Supernova Remnants and GLAST.
Cosmic Rays Discovery of cosmic rays Local measurements Gamma-ray sky (and radio sky) Origin of cosmic rays.
High-energy emission from the tidal disruption of stars by massive black holes Xiang-Yu Wang Nanjing University, China Collaborators: K. S. Cheng(HKU),
Zhang Ningxiao.  Emission of Tycho from Radio to γ-ray.  The γ-ray is mainly accelerated from hadronic processes.
The TeV view of the Galactic Centre R. Terrier APC.
Gamma-Ray Bursts and Supernovae Tsinghua Transient Workshop 8 Nov 2012 Elena Pian INAF-Trieste Astronomical Observatory, Italy & Scuola Normale Superiore.
Supernovae and Gamma-Ray Bursts. Summary of Post-Main-Sequence Evolution of Stars M > 8 M sun M < 4 M sun Subsequent ignition of nuclear reactions involving.
Lunch discussion on motivations for studying blazar variability Greg Madejski, SLAC Parts of this presentation use slides by Benoit Lott and Jun Kataoka.
IceCube non-detection of GRB Neutrinos: Constraints on the fireball properties Xiang-Yu Wang Nanjing University, China Collaborators : H. N. He, R. Y.
1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.
Active Galactic Nuclei & High Energy Neutrino Astronomy 黎卓 北京大学 >TeV JUNO Workshop, IHEP, 2015/7/10.
Unstable e ± Photospheres & GRB Spectral Relations Kunihito Ioka (IPNS, KEK) w/ K.Murase, K.Toma, S.Nagataki, T.Nakamura, M.Ohno, Suzaku team, P.Mészáros.
BH Astrophys. Ch3.6. Outline 1. Some basic knowledge about GRBs 2. Long Gamma Ray Bursts (LGRBs) - Why so luminous? - What’s the geometry? - The life.
The acceleration and radiation in the internal shock of the gamma-ray bursts ~ Smoothing Effect on the High-Energy Cutoff by Multiple Shocks ~ Junichi.
Gamma-Ray Bursts Energy problem and beaming * Mergers versus collapsars GRB host galaxies and locations within galaxy Supernova connection Fireball model.
Gamma-Ray Bursts: Open Questions and Looking Forward Ehud Nakar Tel-Aviv University 2009 Fermi Symposium Nov. 3, 2009.
X-ray follow-ups of TeV unID sources using Suzaku Aya, T. Bamba (ISAS/JAXA, Japan) R. Yamazaki, K. Kohri, H. Matsumoto, H. Yamaguchi, G. Pühlhofer, S.
Kunihito IOKA (Osaka Univ.) 1.Observation 2.Fireball 3.Internal shock 4.Afterglow 5.Jet 6.Central engine 7.Links with other fields 8.Luminosity-lag 9.X-ray.
Gamma-ray emission from molecular clouds: a probe of cosmic ray origin and propagation Sabrina Casanova Ruhr Universitaet Bochum & MPIK Heidelberg, Germany.
Liverpool: 08-10/04/2013 Extreme Galactic Particle Accelerators The case of HESS J Stefan Ohm ( Univ. of Leicester), Peter Eger, for the H.E.S.S.
High-Energy Gamma-Rays and Physical Implication for GRBs in Fermi Era
Introduction to the High Energy Astrophysics Introductory lecture.
Models of GRB GeV-TeV emission and GLAST/Swift synergy Xiang-Yu Wang Nanjing University, China Co-authors: Peter Meszaros (PennState), Zhuo Li (PKU), Hao-ning.
Observational Properties and Modelling of Hypernovae Jinsong Deng National Astronomical Observatories of China Collaborators: P. A. Mazzali (Trieste Obs.
High Energy Emissions from Gamma-ray Bursts (GRBs)
Gamma-ray Bursts and Particle Acceleration Katsuaki Asano (Tokyo Institute of Technology) S.Inoue ( NAOJ ), P.Meszaros ( PSU )
The Universe >100 MeV Brenda Dingus Los Alamos National Laboratory.
1st page of proposal with 2 pictures and institution list 1.
Diffuse Emission and Unidentified Sources
Antimatter in our Galaxy unveiled by INTEGRAL
A Pulsar Wind Nebula Origin for Luminous TeV Source HESS J Joseph Gelfand (NYUAD / CCPP) Eric Gotthelf, Jules Halpern (Columbia University), Dean.
Bremen, Germany Patrick Slane (CfA) COSPAR 2010: E19 Fermi Studies of Collaborators: D. Castro S. Funk Y. Uchiyama J. D. Gelfand O. C. de Jager A. Lemiere.
Gamma-Ray Burst Working Group Co-conveners: Abe Falcone, Penn State, David A. Williams, UCSC,
(Review) K. Ioka (Osaka U.) 1.Short review of GRBs 2.HE  from GRB 3.HE  from Afterglow 4.Summary.
Hiroyasu Tajima Stanford Linear Accelerator Center Kavli Institute for Particle Astrophysics and Cosmology October 26, 2006 GLAST lunch Particle Acceleration.
Cosmic-Ray Electron Excess from Pulsars is Spiky or Smooth?: Continuous and Multiple Electron/Positron Injections Cosmic-Ray Electron Excess from Pulsars.
Astroparticle Physics (3/3)
Study of Young TeV Pulsar Wind Nebulae with a Spectral Evolution Model Shuta J. Tanaka & Fumio Takahara Theoretical Astrophysics Group Osaka Univ., Japan.
The prompt optical emission in the Naked Eye Burst R. Hascoet with F. Daigne & R. Mochkovitch (Institut d’Astrophysique de Paris) Kyoto − Deciphering then.
Gamma-ray bursts Tomasz Bulik CAM K, Warsaw. Outline ● Observations: prompt gamma emission, afterglows ● Theoretical modeling ● Current challenges in.
UHE Cosmic Rays from Local GRBs Armen Atoyan (U.Montreal) collaboration: Charles Dermer (NRL) Stuart Wick (NRL, SMU) Physics at the End of Galactic Cosmic.
Yizhong Fan (Niels Bohr International Academy, Denmark Purple Mountain Observatory, China)
Particle Acceleration in the Universe
GRB-Supernova observations: State of the art
Kunihito Ioka & Mihoko M. Nojiri (KEK, Japan)
Presentation transcript:

Supernova and GRB remnants and their GeV-TeV  -ray emission Kunihito Ioka (KEK) Peter Mészáros (IGC, Penn State) 1. GRB/Hypernova remnants ~ TeV unID sources 2. A new mechanism for TeV  : Radio Isotope decay

Contents TeV unidentified (TeV unID) sources No counterpart, Origin unknown Gamma-Ray Burst (GRB) GRB-Supernova/Hypernova GRB/Hypernova remnant-TeV unID 1.  0 decay: N obs (HNR)~N obs (SNR) 2.  decay + e-Inverse Compton 3. Radio isotope (RI) decay

Multi-wavelength sky New wavelength ⇒ New sources (GRB, pulsar, …) Radio IR Opt X 

Increasing TeV sources “Kifune plot” Jim Hinton, rapporteurtalk, ICRC 2007 Most abundant category: unID! No clear counterparts at other wavelengths

HESS Galactic survey

Observed properties TeV unID Disk ⇒ Galactic origin Extended Aha+ 06

TeV  -ray Leptonic process (e with TeV) Synchrotron ⇒ X Inverse Compton ⇒  Hadronic process (p with TeV) pp ⇒  0 decay ⇒ 2  Synchrotron (X) Inverse Compton (  ) Electron acceleration CMB  Magnetic Field Proton acceleration Nucleus 00 22 ++

SNR Koyama+ 05Bamba+ 03 Aha+ 04 Hwang+ 04 Most likely Galactic CR origin Also likely TeV  sources CR acceleration at SN shock

Suzaku upper limit Matsumoto+ 07 Suzaku⇒Strong X-ray upper limit F TeV /F X >50 ⇒ Leptonic × Hadronic ○ ⇒ Young SNR × TeV  X-ray Bamba+ 07

In old SNRs,  max,electron is low but  0  flux~const ⇒ F TeV /F X >100 Old SNR? But, Rate~1/100yr⇒10 3 SNR ⇔ 10 unID Yamazaki+ 06 TeV X

GRB = Rare SN >msec Luminosity Time ~ 1000 events/yr isotropic ~ 200 keV, nonthermal s ~ 10 3 s : Short, Long GRB Afterglow X Opt Radio The most luminous objects ~10 51 erg/s Redshift SN ~1day

Standard model Central Engine optically thick  → e + e  SN? Internal shock ? ISM External shock  >100 光度 GRB 時間 Afterglow Kinetic energy ↓ Shock dissipation

GRB-SN Bloom+(99) Type Ic spectrum Hjorth+(03) ⇒ GRB is associated with SN Ibc Afterglow Light curve

Collapsar Jet breaks out the massive stellar envelope

GRB/Hypernova E HN ~10 52 erg R SN ~1/100yr R HN ~1/10 4 yr R GRB ~1/10 5 yr t age ~10 5 yr ⇒ N HN ~10~N unID Nomoto+ Hypernove (hyper-energetic SNe) occur more frequently than GRBs

Old GRB/HN remnant  -ray Flux for pp→  0 →2  Just by scaling the SNR calculations CR energy~10 51 erg~10%x10 52 erg ~F unID Flux: t-independent ⇒ Old ones are dominated ⇒ leptonic emission is weak ( low  max,e ) ⇒ unID Number R~1/10 4 yr t age ~10 5 yr ⇒ N HN ~10~N unID Size

Observed number ratio Observed #(HNR)~Observed #(SNR) ① ~10 times energy ⇒ d max ∝ E 1/2 ② Sensitivity to extended sources ∝ (size) ∝ d -1 ⇒ d max ∝ E ⇒ Volume ∝ d max 2 ∝ E 2 Observable SNRs are nearby ⇒ Size is too large?

GRB jet-Cosmic Ray GRB R B Hillas diagram E<ZeBR SN shock Internal shock External shock also accelerate cosmic ray R GRB ~1/10 5 yr ⇒ N GRB ~1 but recent obs. suggest R GRB w/ slow jet ~1/10 4 yr~R HN

GRB remnant (GRBR) Ayal & Piran 01 After non-rela ⇒ Jet→Sphere ⇒ GRBR~SNR hydrodynamically (cf., R~E 1/5 ) Metal distribution could be different Loeb & Perna 98 Wick, Dermer & Atoyan 04 Dermer & Atoyan 06

1.  0 decay Relativistic souces ⇒ less low E ⇒ Low GeV & Radio emission SNR All Atoyan, Buckley & Krawczynski 06 HESS J

2.  decay – e-IC p→n+p→n+  p ~10 16  7 eV  (CMB, …) t decay ~900s KI, Kobayashi & Mészáros 04 Energy fraction of TeV 

Unique morphology Elongated emission outside SNR Age/Energy dependent profile Less low E & radio KI, Kobayashi & Mészáros 04 SNR W49B

Candidate? Aha+ 06

3. Radio isotope (RI) decay No need for target  and matter 56 Ni ⇐ SN light curve ~2MeV Could be shock-accelerated before decay (by reverse shock?) 1998bw: M( 56 Ni)~0.4M ◉

SN light & RI decay 56 Ni, 56 Co decay ⇒SN light curve NS/BH Complete Si burning⇒ 56 Ni Fall back to central BH/NS Nomoto+07

Woosley & Zhang 07Mazzali+05 O Fe( 56 Ni)

RI decay model SNR disappears 56 Co case GRB jet OK 56 Co energy ~energetic GRB Energy fraction of TeV 

Spectrum (2-p)-1 F Exp. cutoff ~TeV t decay ~10 6  6 yr   ~TeV  6 ~GeV Already decayedNow decaying t

RI model spectrum  -2 nd e + X Radio 10 5 yr

Fe ? Depth of air shower maximum Auger

Photo-disintegration Wang, Razzaque & Mészáros 07 Ni/Co/Fe can survive photo-disintegration (⇔ Fe UHECR implied by Auger X max ) Murase,KI+08

Model identificaion Neutrino  Morphology 00  No (Already decayed) RI

Summary TeV unID sources Dominant in TeV sky, Origin unknown Old GRB/Hypernova remnant N obs (HNR)~N obs (SNR) SNR may be more nearby and extended BH in unID? A new mechanism for  -ray production Decay of Accelerated Radio Isotope (RI) No need for target matter or photon