Gamma-ray Mapping of the Interstellar Medium and Cosmic Rays in the Galactic Plane with GLAST Yasushi Fukazawa 1, T. Kamae 1,2, T. Ohsugi 1, T. Mizuno.

Slides:



Advertisements
Similar presentations
ASTROSAT LAXPC Biswajit Paul Raman Research Institute, Bangalore On behalf of the LAXPC Team.
Advertisements

ASTROSAT Prospects for a Hard X-ray Survey  ASTROSAT Overview  LAXPC Details  Science Prospects  Hard X-ray Survey Prospects  Beyond ASTROSAT Biswajit.
X-ray observations of Dark Particle Accelerators Hiro Matsumoto (KMI, Nagoya University) 1.
Fermi-LAT Study of Cosmic-Ray Gradient in the Outer Galaxy --- Fermi-LAT view of the 3 rd Quadrant --- Tsunefumi Mizuno (Hiroshima Univ.), Luigi Tibaldo.
X-ray observations of Dark Particle Accelerators Hiro Matsumoto (KMI, Nagoya University) 1.
Multiwavelength Sky by NASA. Radio Continuum (408 MHz). Intensity of radio continuum emission from surveys with ground- based radio telescopes (Jodrell.
Galactic Diffuse Gamma-ray Emission, the EGRET Model, and GLAST Science Stanley D. Hunter NASA/GSFC Code 661
Gamma-ray Astronomy Missions, and their Use of a Global Telescope Network.
Diffuse Gamma-Ray Emission Su Yang Telescopes Examples Our work.
The all-sky distribution of 511 keV electron-positron annihilation emission Kn ö dlseder, J., Jean, P., Lonjou, V., et al. 2005, A&A, 441, 513.
Multi-Messenger Astronomy AY 17 10/19/2011. Outline What is Multi-messenger astronomy? Photons Cosmic Rays Neutrinos Gravity-Waves Sample-Return.
Gamma-Ray Astronomy Dana Boltuch Ph. D
The Extreme Universe of Gamma-ray Astronomy Professor Lynn Cominsky Department of Physics and Astronomy Sonoma State University.
Gamma-ray Astronomy (The Short Story…). The Big Picture l Whole sky glows l Extreme environments l Probes of the Universe CGRO/EGRET All Sky Map.
DOE Program Review June 15, GLAST Science at SLAC Tune Kamae SLAC/KIPAC on behalf of the SLAC GLAST Team Plan of Talk  Activity of GLAST Scientists.
GLAST LAT Project DOE HEP Program Review – June 3, Gamma-ray Large Area Space Telescope Science with the Large Area Telescope on GLAST DOE HEP Physics.
1 Gamma-Ray Astronomy with GLAST May 24, 2008 Toby Burnett WALTA meeting.
Exploring the High Energy Universe where Particle Physics and Astrophysics Collide Prof. Lynn Cominsky Sonoma State University GLAST Education and Public.
GLAST Simulations Theodore E. Hierath Louisiana State University August 20, 2001.
JD1 rationale Catherine Cesarsky, Diego Torres, Stefan Wagner.
GLAST Workshop (Cambridge, MA, 6/21/07) Patrick Slane (CfA) Supernova Remnants and GLAST.
Cosmic Rays Discovery of cosmic rays Local measurements Gamma-ray sky (and radio sky) Origin of cosmic rays.
Shuang-Nan Zhang (张双南) Center for Particle Astrophysics 粒子天体物理中心
Seeing the Invisible Prof. Lynn Cominsky Sonoma State University Director, Education and Public Outreach.
1 Arecibo Synergy with GLAST (and other gamma-ray telescopes) Frontiers of Astronomy with the World’s Largest Radio Telescope 12 September 2007 Dave Thompson.
Magnetic Fields in Supernova Remnants and Pulsar-Wind Nebulae 2013/12/18 Speaker : Yu-Hsun Cheng Professor: Yosuke Mizuno.
P olarized R adiation I maging and S pectroscopy M ission Probing cosmic structures and radiation with the ultimate polarimetric spectro-imaging of the.
Alexander Kappes UW-Madison 4 th TeVPA Workshop, Beijing (China) Sep. 24 – 28, 2008 The Hunt for the Sources of the Galactic Cosmic Rays — A multi-messenger.
High-Energy Astrophysics
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
International research project GALA: Monitoring of high energy gamma-ray astrophysical sources.
Milagro Gus Sinnis Milagro NSF Review July 18-19, 2005 Milagro: A Synoptic VHE Gamma-Ray Telescope Gus Sinnis Los Alamos National Laboratory.
Summary(3) -- Dynamics in the universe -- T. Ohashi (Tokyo Metropolitan U) 1.Instrumentation for dynamics 2.Cluster hard X-rays 3.X-ray cavities 4.Dark.
Introduction to gamma-ray astronomy GLAST-Large Area Telescope Introduction to GLAST Science New way of studying astrophysics Schedule of GLAST project.
Gamma-Ray Bursts observed with INTEGRAL and XMM- Newton Sinead McGlynn School of Physics University College Dublin.
Gamma-Ray Telescopes. Brief History of Gamma Ray Astronomy 1961 EXPLORER-II: First detection of high-energy  -rays from space 1967 VELA satelllites:
Project Gamma By Wylie Ballinger and Sam Russell Visit For 100’s of free powerpoints.
Space-based Gamma-ray Astronomy Liz Hays (NASA Goddard Space Flight Center)
Instrumental Development in Japan for Future Missions 1.Si strip detectors(GLAST) 2.Supermirror technology 3.New hard-X/  detectors 4.TES calorimeters.
Hard X-ray Polarimeter for Small Satellite Design, Feasibility Study, and Ground Experiments K. Hayashida (Osaka University), T. Mihara (RIKEN), S. Gunji,
Discovery of  rays from Star-Forming Galaxies New class of nonthermal sources/gamma-ray galaxies (concept of temperature breaks down at high energies)
High sensitivity all sky X-ray monitor and survey with MAXI Mihara, M. kohama, M. Suzuki (RIKEN), M. Matsuoka, S. Ueno, H. Tomida (JAXA), N. Kawai, J.
Figure 5. The LAT and the GLAST spacecraft. GLAST will also carry a gamma-ray burst monitor, the GBM instrument. For more information about GLAST, see.
Tsunefumi Mizuno 1 Fermi_Diffuse_ASJ_2010Mar.ppt Fermi-LAT Study of Galactic Cosmic-Ray Distribution -- CRs in the Outer Galaxy -- Tsunefumi Mizuno Hiroshima.
1 GLAST The Gamma-ray Large Area Space Telescope Status of the Mission F.Longo see
Observations of the Large Magellanic Cloud with Fermi Jürgen Knödlseder (Centre d’Etude Spatiale des Rayonnements) On behalf of the Fermi/LAT collaboration.
MA4: HIGH-ENERGY ASTROPHYSICS Critical situation of manpower : 1 person! Only «free research» based in OAT. Big collaborations based elsewhere (Fermi,
The science objectives for CALET Kenji Yoshida (Shibaura Institute of Technology) for the CALET Collaboration.
Tsunefumi Mizuno 1 Fermi_Diffuse_2009Mar.ppt Diffuse Gamma- Rays seen by Fermi- LAT and Cosmic- Ray Distributions Tsunefumi Mizuno Hiroshima Univ. on behalf.
GLAST Hiroshima University, ISAS Cosmic-Ray Source Generator Y.Fukazawa (Hiroshima U) M.Ozaki(ISAS) T.Mizuno(Hiroshima U) S.Hirano(Hiroshima U) T.Kamae(Hiroshima.
The Universe >100 MeV Brenda Dingus Los Alamos National Laboratory.
1st page of proposal with 2 pictures and institution list 1.
ESAC_3_24_05.ppt 1 GLAST Large Area Telescope Overview and Science Update Peter F. Michelson Stanford University GLAST User’s Committee.
Diffuse Emission and Unidentified Sources
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
Science Capabilities - Summary 200  bursts per year  prompt emission sampled to > 20 µs AGN flares > 2 mn  time profile +  E/E  physics of jets and.
Gamma-ray Measurements of the distribution of Gas and Cosmic Ray in the Interstellar Space Yasushi Fukazawa Hiroshima University.
Peter F. Michelson Stanford University Principal Investigator, Large Area Telescope Collaboration on behalf of the Fermi LAT Collaboration.
Sources emitting gamma-rays observed in the MAGIC field of view Jelena-Kristina Željeznjak , Zagreb.
論文紹介 _2010-Jan.ppt Tsunefumi Mizuno 1 Fermi 衛星でみた拡散ガンマ線放射と銀河宇宙線 Tsunefumi Mizuno Hiroshima Univ. June 15, 2009 "Fermi Large Area Telescope Measurements.
Exploring an evidence of supermassive black hole binaries in AGN with MAXI Naoki Isobe (RIKEN, ) and the MAXI
A fast online and trigger-less signal reconstruction Arno Gadola Physik-Institut Universität Zürich Doktorandenseminar 2009.
Hiroyasu Tajima Stanford Linear Accelerator Center Kavli Institute for Particle Astrophysics and Cosmology October 26, 2006 GLAST lunch Particle Acceleration.
1 Study of Data from the GLAST Balloon Prototype Based on a Geant4 Simulator Tsunefumi Mizuno February 22, Geant4 Work Shop The GLAST Satellite.
Fermi Gamma-ray Space Telescope Searches for Dark Matter Signals Workshop for Science Writers Introduction S. Ritz UCSC Physics Dept. and SCIPP On behalf.
Gamma-ray Large Area Space Telescope -France -Germany -Italy -Japan -Sweden -USA Energy Range 10 keV-300 GeV. GLAST : - An imaging gamma-ray telescope.
1 ASTRON is part of the Netherlands Organisation for Scientific Research (NWO) Netherlands Institute for Radio Astronomy Astronomy at ASTRON George Heald.
Report of GLAST Balloon Flight October Annual meeting of Astronomical Society of Japan T. Mizuno and other GLAST Balloon Team
Particle Acceleration in the Universe
on behalf of the Fermi-LAT Collaboration
Presentation transcript:

Gamma-ray Mapping of the Interstellar Medium and Cosmic Rays in the Galactic Plane with GLAST Yasushi Fukazawa 1, T. Kamae 1,2, T. Ohsugi 1, T. Mizuno 1, S. Yoshida 1, K. Hirano 1, M. Ozaki 3, and GLAST team (1:Hiroshima University, 2:SLAC, 3:ISAS) GLAST, the next gamma-ray satellite, will be launched in 2005 under USA, Japan, Italy, France, and so on. New t echnologies, such as silicon-strip detectors developed in Hiroshima University, enable us to obtain a much imporoved capabilities for gamma-ray observations; 50 times as good as sensitivity as EGRET, good source location down to a few arcmins, and a wider field of view with 20% of the whole sky. Thanks to these characteristics, GLAST will detect more than 10,000 objects. Together with Gamma-ray bursts, Pulsars, BLAZARs, SNRs, Dark matters, the mapping of the Galactic diffuse gamma-ray emission is one of key sciences. This enables us to obtain the distribution of the interstellar medium and cosmic rays in the Galactic plane, especially of protons. We are now developing not only FM silicon-strip detectors but also instrumental simulators which will help us to perform such complex analyses.

SAS-2 OSO-3 COS-B EGRET (CGRO) GLAST Increase of number of detected objects GLAST will detect >10,000 gamma-ray sources. Various kinds of astronomical objects can be observed, and thus GLAST will open a new era of gamma-ray astronomy. EGRETGLAST 1

9cm Silicon-Strip Detector (FM) Developed by Hiroshima Univ. and HPK (Japan) New Technology PD readout Anti-Coincidence Detector (AC D) CsI-Array Calorimeter (CAL) Plastic-Scinti + PMT 4x4 array of identical towers Si -Pb Tracker (TK R) 2

EGRET GLAST Energy Band 30MeV--10GeV 20MeV--100GeV Field of View 0.5sr 2.4sr (20% of 4π) Effective Area 1,500cm2 11,000cm2 Energy Resolution 10% 10% Dead time per 1 event 100ms 20μs Source Location 5--30arcmin arcmin Sensitivity ~ 1×10 -7 cm -2 s -1 ~ 1×10 -7 cm -2 s -1 (1day) ~ 2×10 -9 cm -2 s -1 (2years) Number of Detected objects 271 >10000 Weight 1820kg 2560kg Orbit(28.5 O incl.) 350km 550km Life time 9years >5yesrs Basic Performance of GLAST EGRET GLAST 3

GLAST is also important as All-sky Monitor 1orbit 1 day 100 sec Wide field of view ( 20% of the whole sky ) can cover 85% of the whole sky in 1orbit (100min) 200 Gamma-ray Bursts per year Day-scale light curve will be available for all 3EG sources + 80 new sources 10 4 sources in 2 years GLAST and MAXI (Japanese X-ray all-sky monitor, 2005-) cooperation will be important. Sky covering 4

Pi-0 decay (cosmic ray p) * (interstellar gas) IC (cosmic ray e) * (interstellar photon) Radio-synchrotron (cosmic ray e) * (interstellar B) 100MeV100GeV Bremss(e) π decay(p) Inverse Compton (e) One of key sciences of GLAST is the Diffuse Gamma-Ray Emission along the Galactic Plane. We can study energy density and distribution of Cosmic-ray Proton, Electron, and Gas (and B), separately, and study the Galactic Structure and Formation in terms of Energetics ! Bremss (cosmic ray e) * (interstellar gas) 0 COS-B (Mayer-Hasselwander et al. 1982) Gamma-ray is emitted by the interaction between the interstellar medium and cosmic-rays. 5

Koyama et al Tanimori et al EGRET image (left) and GLAST Simulation of the Gamma-Cyg where supernova remnant and molecular cloud are thought to be interacting. Evidences of particle acceleraton in the supernova remnant SN1006. Identify the cosmic-ray acceleration sites. Pulsar nubula From top, 408MHz ( Synchrotron )、 21cm(H1) 、 CO(H 2 ) 、 FIR ( dust,HI )、 NIR ・ optical(stars) 、 X -ray ( hot gas ) Multi-wavelength images of the Galactic plane 6

LMC (EGRET detected) Starburst Galacy: M82 Clusters of galaxies Simulated gamma-ray spectrum of the Galactic plane with GLAST Orion EGRET image of the giant molecular cloud SMC Digel et al Non-biasing survey of the interstellar gas and cosmic-ray protons and electrons! GLAST simulation M31 Comparison of cosmic-ray density with other galaxies Combined with other wavelength data, we can obtain the distribition of various Galactic materials. Galaxy radiation simulator (2x2degre 2 ) 7 Extended emission Complex Detector Responses Scanning observation But, Forward method anlysis with full-detecor and BGD simulator is valuable and efficient.

We are now developing ….. Protons Electrons Detector simulator (Geant4) Cosmic-ray generator for BGD simulation These are at first applied to the Balloon flight experiments (see postar p210). Further works... Extention to FM model, include He, e+, gamma-ray etc. Tuning through calibrations, study of BGD rejection 8