Phase structure of topological insulators by lattice strong-coupling expansion Yasufumi Araki (The Univ. of Texas at Austin) Jul. 29 - Aug. 3, 2013: Lattice.

Slides:



Advertisements
Similar presentations
Quasiparticle Scattering in 2-D Helical Liquid arXiv: X. Zhou, C. Fang, W.-F. Tsai, J. P. Hu.
Advertisements

Lecture 1: basics of lattice QCD Peter Petreczky Lattice regularization and gauge symmetry : Wilson gauge action, fermion doubling Different fermion formulations.
Spintronics with topological insulator Takehito Yokoyama, Yukio Tanaka *, and Naoto Nagaosa Department of Applied Physics, University of Tokyo, Japan *
Berry curvature: Symmetry Consideration
Hybrid Monte-Carlo simulations of electronic properties of graphene [ArXiv: ] P. V. Buividovich (Regensburg University)
High T c Superconductors & QED 3 theory of the cuprates Tami Pereg-Barnea
Quantum “disordering” magnetic order in insulators, metals, and superconductors HARVARD Talk online: sachdev.physics.harvard.edu Perimeter Institute, Waterloo,
Topological Superconductors
Gauge Field of Bloch Electrons in dual space First considered in context of QHE Kohmoto 1985 Principle of Quantum Mechanics Eigenstate does.
Pavel Buividovich (Regensburg). They are very similar to relativistic strongly coupled QFT Dirac/Weyl points Dirac/Weyl points Quantum anomalies Quantum.
Chiral symmetry breaking in graphene: a lattice study of excitonic and antiferromagnetic phase transitions Ulybyshev Maxim, ITEP, MSU.
Quantum anomalous Hall effect (QAHE) and the quantum spin Hall effect (QSHE) Shoucheng Zhang, Stanford University Les Houches, June 2006.
QCD – from the vacuum to high temperature an analytical approach.
Naoki Yamamoto (Univ. of Tokyo) Tetsuo Hatsuda (Univ. of Tokyo) Motoi Tachibana (Saga Univ.) Gordon Baym (Univ. of Illinois) Phys. Rev. Lett. 97 (2006)
Quantum Spin Hall Effect - A New State of Matter ? - Naoto Nagaosa Dept. Applied Phys. Univ. Tokyo Collaborators: M. Onoda (AIST), Y. Avishai (Ben-Grion)
Z2 Structure of the Quantum Spin Hall Effect

Fractional topological insulators
Functional renormalization – concepts and prospects.
Universality in ultra-cold fermionic atom gases. with S. Diehl, H.Gies, J.Pawlowski S. Diehl, H.Gies, J.Pawlowski.
Quick and Dirty Introduction to Mott Insulators
Functional renormalization group equation for strongly correlated fermions.
Physics of Graphene A. M. Tsvelik. Graphene – a sheet of carbon atoms The spectrum is well described by the tight- binding Hamiltonian on a hexagonal.
Topological Insulators and Beyond
Organizing Principles for Understanding Matter
Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University.
Microscopic nematicity in iron superconductors Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration with: Laura Fanfarillo.
Topology and solid state physics
Quantum Spin Hall Effect and Topological Insulator Weisong Tu Department of Physics and Astronomy University of Tennessee Instructor: Dr. George Siopsis.
A direct relation between confinement and chiral symmetry breaking in temporally odd-number lattice QCD Lattice 2013 July 29, 2013, Mainz Takahiro Doi.
Composite Fermion Groundstate of Rashba Spin-Orbit Bosons Alex Kamenev Fine Theoretical Physics Institute, School of Physics & Astronomy, University of.
3. Second Chern number and its physical consequences B. TRI topological insulators based on lattice Dirac models The continuum Dirac model in (4+1)-d dimensions.
Jung Hoon Han (SKKU, Korea) Topological Numbers and Their Physical Manifestations.
Non-equilibrium critical phenomena in the chiral phase transition 1.Introduction 2.Review : Dynamic critical phenomena 3.Propagating mode in the O(N) model.
Lattice Fermion with Chiral Chemical Potential NTFL workshop, Feb. 17, 2012 Arata Yamamoto (University of Tokyo) AY, Phys. Rev. Lett. 107, (2011)
Effects of Interaction and Disorder in Quantum Hall region of Dirac Fermions in 2D Graphene Donna Sheng (CSUN) In collaboration with: Hao Wang (CSUN),
Topological Insulators and Topological Band Theory
Instanton vacuum at finite density Hyun-Chul Kim Department of Physics Inha University S.i.N. and H.-Ch.Kim, Phys. Rev. D 77, (2008) S.i.N., H.Y.Ryu,
Phase transitions in Hubbard Model. Anti-ferromagnetic and superconducting order in the Hubbard model A functional renormalization group study T.Baier,
Chiral Dynamics Workshop, JLAB, Aug. 6-10, 2012
Insulating Spin Liquid in the 2D Lightly Doped Hubbard Model
Pavel Buividovich (Regensburg). Collective motion of chiral fermions High-energy physics: High-energy physics: Quark-gluon plasma Quark-gluon plasma Hadronic.
The Helical Luttinger Liquid and the Edge of Quantum Spin Hall Systems
(Simon Fraser University, Vancouver)
Mott phases, phase transitions, and the role of zero-energy states in graphene Igor Herbut (Simon Fraser University) Collaborators: Bitan Roy (SFU) Vladimir.
Quantum exotic states in correlated topological insulators Su-Peng Kou ( 寇谡鹏 ) Beijing Normal University.
Topology induced emergent dynamic gauge theory in an extended Kane-Mele-Hubbard model Xi Luo January 5, 2015 arXiv:

Oct. 26, 2005KIAS1 Competing insulating phases in one-dimensional extended Hubbard models Akira Furusaki (RIKEN) Collaborator: M. Tsuchiizu (Nagoya) M.T.
Topological Insulators Effects of spin on transport of electrons in solids.
Topological Insulators
The Puzzling Boundaries of Topological Quantum Matter Michael Levin Collaborators: Chien-Hung Lin (University of Chicago) Chenjie Wang (University of Chicago)
Quantum Hall transition in graphene with correlated bond disorder T. Kawarabayshi (Toho University) Y. Hatsugai (University of Tsukuba) H. Aoki (University.
Monday, Apr. 11, 2005PHYS 3446, Spring 2005 Jae Yu 1 PHYS 3446 – Lecture #18 Monday, Apr. 11, 2005 Dr. Jae Yu Symmetries Local gauge symmetry Gauge fields.
Dirac’s inspiration in the search for topological insulators
Lattice gauge theory treatment of Dirac semimetals at strong coupling Yasufumi Araki 1,2 1 Institute for Materials Research, Tohoku Univ. 2 Frontier Research.
Order parameters and their topological defects in Dirac systems Igor Herbut (Simon Fraser, Vancouver) arXiv: (Tuesday) Bitan Roy (Tallahassee)
Quantum spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Andrei Bernevig, Congjun Wu (Stanford) Xiaoliang Qi (Tsinghua), Yongshi Wu.
NTNU, April 2013 with collaborators: Salman A. Silotri (NCTU), Chung-Hou Chung (NCTU, NCTS) Sung Po Chao Helical edge states transport through a quantum.
Cenke Xu 许岑珂 University of California, Santa Barbara Stable 2+1d CFT at the Boundary of a Class of 3+1d Symmetry Protected Topological States.
NTNU 2011 Dimer-superfluid phase in the attractive Extended Bose-Hubbard model with three-body constraint Kwai-Kong Ng Department of Physics Tunghai University,
Syo Kamata Rikkyo University In collaboration with Hidekazu Tanaka.
Photo-induced topological phase transitions in ultracold fermions
From fractionalized topological insulators to fractionalized Majoranas
NGB and their parameters
Electronic polarization. Low frequency dynamic properties.
Handout 9 : The Weak Interaction and V-A
Topological Insulators
Phase structure of graphene from Hybrid Monte-Carlo simulations
SOC Fermi Gas in 1D Optical Lattice —Exotic pairing states and Topological properties 中科院物理研究所 胡海平 Collaborators : Chen Cheng, Yucheng Wang, Hong-Gang.
Presentation transcript:

Phase structure of topological insulators by lattice strong-coupling expansion Yasufumi Araki (The Univ. of Texas at Austin) Jul Aug. 3, 2013: Lattice Mainz, Germany [1] YA and T. Kimura, Phys. Rev. B 87, (2013) [2] A. Sekine, T. Z. Nakano, YA and K. Nomura, Phys. Rev. B 87, (2013) 6E-1

Topological insulators “Insulator” Conduction band and valence band are separated by a large bandgap. “Topological” Wave function of electron is characterized by nontrivial topology. e.g.) Topological invariant - Chern number (Z, Z 2,...) 2005: Theoretical prediction - Kane, Mele 2007: First observed in HgTe - Konig et al. Existence of massless chiral fermions: surface states (3D) Hasan, Kane (2010) edge states (2D) - carries anomalous/spin Hall current

This work Effect of e-e interaction on the topological nature? Apply lattice gauge theory … TIs can be described in terms of Wilson fermions. e-e interaction in terms of QED = U(1) gauge theory. Analogy to “chiral symmetry breaking” in QCD Topological phase structure changes from noninteracting systems. Question: cf.) (Eff. theory of) graphene (2D massless Dirac fermion) Exciton condensate spontaneous gap generation (in the bulk) Changes the topological band structure in TIs…? [1] 2D topological insulators (Kane-Mele model on honeycomb lattice) [2] 3D topological insulators (Wilson fermion on square lattice) Drut, Lahde (2009) Araki, Hatsuda (2010)

2D lattice fermions Fermions on honeycomb lattice (e.g. graphene) : Wallace(1947) “Dirac cone” structure around two Dirac points K ±. Two Dirac nodes are degenerate: “doublers” Physical interpretation of the “mass term” A-site favors ↑. / B-site favors ↓. = staggered magnetic field: m momentum independent: nontopological mass term induces antiferromagnetism in z-direction. KK’

2D topological insulators Kane-Mele model Kane, Mele (2005) Leads to “effective mass” term in the bulk Momentum-dependent mass term Spin-orbit interaction (t’) is incorporated on the honeycomb lattice. Degeneracy of Dirac nodes is split by spin-orbit interaction. Analogy to the Wilson term becomes a “topological insulator” characterized by quantum spin Hall effect K K’

Topological phase structure Non-interacting system: m t’ Normal insulator (Uniform SDW) Topological insulator (Quantum spin Hall) Kane, Mele (2005) In the presence of e-e interaction…? K K’

QED on honeycomb lattice Incorporate e-e interaction mediated by electromagnetic field. Electrons: τ : discretize by Δτ like staggered fermions. Define QED on honeycomb lattice - apply Lattice gauge theory. Araki (2011), Giuliani et al. (2012), Buidovich et al. (2012) (x,y) : defined on honeycomb lattice. Electromagnetic field: Link variables between lattice sites. Kinetic term: given as a sum of plaquettes. proportional to “inverse coupling”: (~0.04: graphene) τ [1]

Strong coupling expansion (1) Expand the partition function by β (strong coupling expansion). O(β 0 ): on-site interaction Decompose into short-range interaction terms. (2) Integrate out the link variables. ~ Lattice version of Hubbard model. (3) Introduce bosonic auxiliary fields. (Extended Hubbard-Stratonovich transformation) (4) Integrate out the fermionic fields. Effective potential F(σ; m, t’)

Order parameters σ 2 (=x-direction) σ 1 (=z-direction) t’, m σ 1 and σ 2 should be distinguished. |σ| : imbalance between two sublattices θ : direction in the U(1) spin subspace σ : antiferromagnetism (spin density wave) t’ and m breaks spin symmetry in z-direction explicitly.

Behavior of order parameters Fix t’=0.5t’ C / Vary m=0→∞. σ 2 ≠0 for small m. σ 1 →∞, σ 2 =0 for m→∞. tilted normal

Phase diagram (σ 2 ≠0) (σ 2 =0) New phase (Tilted AF) appears by the effect of e-e interaction. (instead of m)

Analogy to Lattice QCD 2D TIsLattice QCD effective massspin-orbit interaction (t’)Wilson term (r) splits degeneracy ofvalleys (2)doublers (16) explicitly breaksU(1) remnant spin symm.(continuous) chiral symm. Induced phaseTilted AF phaseAoki phase characterized by (nematic AF)(pion condensation) both orthogonal to the explicit breaking direction. Phase structure of topological insulators can be conjectured from lattice QCD...?

3D topological insulator 3D TIs (e.g. Bi 2 Se 3 ) are described phenomenologically by Wilson fermions: Effective potential F(φ σ,φ π ) Zhang et al. (2009) 2D TI: single Z 2 invariant (Chern number) 3D TI: four Z 2 invariantsvarious topological phases -2r < m 0 < 0: “strong topological insulator” e-e interaction defined by QED (U(1) lattice gauge theory) Strong coupling expansion + Mean-field analysis “pseudospin ferromagnetism” [2]

Phase structure 〈 φ π 〉 vanishes everywhere in the phase diagram. - TI state persists in the strong coupling region. TI/NI transition is characterized by effective mass - TI/NI transition is shifted by the e-e interaction. Strong coupling limit Noninteracting limit (r: fixed)

Summary The effect of e-e interaction on topological insulators is investigated. TI band structure can be described in terms of Wilson fermions. Topological phase structure is shifted by the strong e-e interaction: 2D: new phase (“Tilted AF”) appears between TI/NI transition. 3D: TI persists at strong coupling; phase boundary is shifted. Change of physical properties under the phase transition…? anomalous (spin) Hall conductivity, existence of surface states, … Analogy to lattice QCD phase structure…? existence of “pions”?

Backup slides

Band strcture of graphene kxkx kyky E Wallace(1947) “Dirac cone” structure at long wavelength.... around two Dirac points K ±. Tight-binding Hamiltonian: Gapless “semimetal” at half-filling.

Effective field theory Sec. 2.1 Tight-binding Hamiltonian: λ : sublattice / τ : valley

Reduced QED Sec. 2.2 Scale transformation: Saddle point approximation: Spatial components (=retardation) can be neglected.

Introducing a bandgap (Topology of the ground state is trivial.) Staggered magnetic field: Apply a spatially periodic magnetic field so that A-site favors ↑. / B-site favors ↓. Opens a finite gap m at each Dirac point.

Kane-Mele model Second-NN hopping = spin-orbit interaction Opens a gapat each Dirac point. Sign of “mass” depends on valley (Dirac point) index: +M SO around K + ; -M SO around K - Nontrivial topology of the ground state w.f.

Doubling problem and spin symmetry Remnant U(1) spin is broken by SDW (antiferromagnetism). Spin SU(2) is restricted to U(1). (defined in the (z,x)-plane) Sec. 2.3 Imaginary time is discretized by lattice spacing Δτ. Pole of fermion propagator appears at ω=π/Δτ as well as at ω=0. Number of d.o.f. is doubled: Doubling problem Nielsen, Ninomiya (1981) To retain the physical d.o.f.: (i) remove the spin index. (ii) treat doublers as spin d.o.f. (staggered discretization) i.e. Full spin symmetry is intrinsically broken.

Spin and staggered representation App. A eigenvalue of S y.

Strong coupling expansion Expansion by β (strong coupling expansion) is valid. O(β 0 )O(β 1 ) (β=0: strong coupling limit) O(β 0 ): on-site interactionO(β 1 ): NN interaction Short-range interaction terms are derived systematically.

Strong coupling limit [O(β 0 )]: On-site 4-Fermi term is generated. Bosonic auxiliary fields: (Extended Hubbard-Stratonovich transf.) Remnant U(1) spin: ~ Lattice version of Hubbard model. σ serves as an order parameter for sublattice / spin symmetry breaking. = Antiferromagnetism (Spin Density Wave)

Spontaneous symmetry breaking Thermodynamic potential: (mean field ansatz) Dirac cone structure leads to log-singularity at σ=0. Phase of σ can be chosen arbitrarily in remnant U(1).

Effect of spin-orbit interaction t’ Log singularity is moderated by the SOI gap. In the absence of staggered magnetic field m: σ 1 vanishes at the potential minimum. (2nd order) Order parameter σ 2 gets suppressed as t’→∞. Two Dirac cones interrupt each other in σ 1 -direction.

Physics of NG mode: σ1σ1 y σ2σ2 NG mode? source: m, t’ U(1) remnant spin symmetrySU(2) full spin symmetry Physics of Tilted AF phase transport properties (QHE,QSHE),...? x z Normal AF Tilted AF

Trajectory of potential minimum Fix t’ and vary m: 0→∞: 〈 σ 2 〉 vanishes at a certain m (or σ 1 ). 〈 σ 1 〉 is induced by m explicitly. (one-to-one correspondence) Sec

Trajectory of potential minimum Sec σ 1 monotonically increases as a function of m. t’=0.5t’ C t’=1.0t’ C t’=1.5t’ C

Phase structure Parametrize by (t’,m): Sec Normal AF Tilted AF Topological

Relation to previous studies Hohenadler et al. (2012) (xy-antiferromagnetic insulator = “Tilted AF”) Monte Carlo simulations of Kane-Mele-Hubbard model: (Topological band insulator) Our result corresponds to U→∞ limit with m-axis.

4D Quantum Hall system C=0 Insulator: Normal insulator Sec J. M. Edge et al. (2012) Metal: Tilted AF? (effect of NG mode?) C≠0 Insulator: Topological insulator mean displacement

Conjecture from lattice QCD Phase structure of topological insulators can be conjectured from lattice QCD...?