X-ray Properties of Five Galactic SNRs arXiv:1312.3929 Thomas G. Pannuti et al.

Slides:



Advertisements
Similar presentations
(2) Profile of the Non-Thermal Filaments of SNRs =>High Energy Particle Acceleration =>High Energy Particle Acceleration In all the SNRs & GC Non Thermal.
Advertisements

SN 1987A spectacular physics Bruno Leibundgut ESO.
Supernova Remnants Shell-type versus Crab-like Phases of shell-type SNR.
Strange Galactic Supernova Remnants G (the Tornado) & G in X-rays Anant Tanna Physics IV 2007 Supervisor: Prof. Bryan Gaensler.
2009 July 8 Supernova Remants and Pulsar Wind Nebulae in the Chandra Era 1 Modeling the Dynamical and Radiative Evolution of a Pulsar Wind Nebula inside.
Supernova Remnants in the ChASeM33 X-ray Survey of M33 Knox S. Long, William P. Blair, P. Frank Winkler, and the ChASeM33 team.
14.2 Galactic Recycling Our Goals for Learning How does our galaxy recycle gas into stars? Where do stars tend to form in our galaxy?
Young Stellar and Substellar Objects in the ρ Ophiuchi Molecular Cloud Bruce Wilking (University of Missouri-St. Louis) Marc Gagné (West Chester University)
Supernova Remnants in the ChASeM33 X-ray Observations of M33 Knox Long, Bill Blair, Frank Winkler, Terry Gaetz, David Helfand, Jack Hughes, Kip Kuntz,
Multiwavelength Sky by NASA. Radio Continuum (408 MHz). Intensity of radio continuum emission from surveys with ground- based radio telescopes (Jodrell.
EGOs: Massive YSOs in IRDCs Ed Churchwell & Claudia Cyganowski with co-workers: Crystal Brogan, Todd Hunter, Barb Whitney Qizhou Zhang Dense Cores in Dark.
Association of Galactic supernova remnants with molecular clouds COSPAR, Bremen, July 2010 Bing Jiang (Nanjing Univ., China) in collaboration with Yang.
Particles and Fields in Lobes of Radio Galaxies Naoki Isobe (NASDA, MAXI Mission) Makoto Tashiro (Saitama Univ.) Kazuo Makishima (Univ. of Tokyo) Hidehiro.
Recent Imaging Results from SINGS G. J. Bendo, R. C. Kennicutt, L. Armus, D. Calzetti, D. A. Dale, B. T. Draine, C. W. Engelbracht, K. D. Gordon, A. D.
Centaurus A Kraft, Hardcastle, Croston, Worrall, Birkinshaw, Nulsen, Forman, Murray, Goodger, Sivakoff,Evans, Sarazin, Harris, Gilfanov, Jones X-ray composite.
Facts about SNe and their remnants Evolution of an SNR sensitively depends on its environment. Observed SNRs are typically produced by SNe in relative.
Q. Daniel Wang and Cornelia Lang (U. of Massachusetts) Eric Gotthelf (Columbia U.) Chandra X-ray Survey of the Galactic Center: On the Nature of the X-ray.
Neutron Star Environment: from Supernova Remnants to Pulsar Wind Nebulae Stephen C.-Y. Ng McGill University Special thanks to Pat Slane for some materials.
IR Shell Surrounding the Pulsar Wind Nebula G SNRs and PWNe in the Chandra Era Boston, July 8, 2009 Tea Temim (CfA, Univ. of MN) Collaborators:
March 11-13, 2002 Astro-E2 SWG 1 John P. Hughes Rutgers University Some Possible Astro-E2 Studies of Supernova Remnants.
IRAC 8 micro K-band keV X-ray Emission Line Spectroscopy of Diffuse Hot Plasma XMM-Newton RGS Liu, Wang, Li, & Peterson 2010 Li & Wan 2007 T ~ 3.
An X-ray Study of the Bright Supernova Remnant G with XMM-Newton SNRs and PWNe in the Chandra Era Boston, MA – July 8 th, 2009 Daniel Castro,
GLAST Workshop (Cambridge, MA, 6/21/07) Patrick Slane (CfA) Supernova Remnants and GLAST.
1.Extraplanar diffuse X-ray emission – a survey of highly inclined disk galaxies –How is the emission correlated with galaxy properties? –How are observations.
Class I methanol masers in the regions of high-mass star-formation Max Voronkov Software Scientist – ASKAP In collaboration with: Caswell J.L., Ellingsen.
Diagnostics of the origin of X- ray emission in Cygnus Loop Xin Zhou, INAF – Osservatorio Astronomico di Palermo, Italy & Nanjing University, ChinaCollaborators:
Magnetic Fields in Supernova Remnants and Pulsar-Wind Nebulae 2013/12/18 Speaker : Yu-Hsun Cheng Professor: Yosuke Mizuno.
Molecular clouds and gamma rays
The Hot Plasma in the Galactic Center with Suzaku Masayoshi Nobukawa, Yoshiaki Hyodo, Katsuji Koyama, Takeshi Tsuru, Hironori Matsumoto (Kyoto Univ.)
Radio and X-Ray Properties of Magellanic Cloud Supernova Remnants John R. Dickel Univ. of Illinois with: D. Milne. R. Williams, V. McIntyre, J. Lazendic,
I. Origin of the dust emission from Tycho’s SNR II. Mapping observations of [Fe II] lines and dust emission of IC443 by IRSF & AKARI III. Summary AKARI.
Robert Benjamin (UW-W) and the GLIMPSE team with special thanks to
Suzaku, XMM-Newton and Chandra Observations of the Central Region of M 31 Hiromitsu Takahashi (Hiroshima University, Japan) M. Kokubun, K. Makishima, A.
Detecting Cool Dust in SNRs in LMC and SMC with ALMA Takaya Nozawa (Kavli IPMU) and Masaomi Tanaka (NAOJ) 2012/6/11 Targets ・ SN 1987A: our proposal for.
Supernova Remnant Reveals Magnesium in Abundance Instrument ACISACIS Reference S. Park et al, 2003 Astrophys. J. 592, L41 Distance Estimate 160,000 light.
Collaborators: Michael Muno (UCLA) Frederick Baganoff (MIT) Yoshitomo Maeda (ISAS) Mark Morris (UCLA) George Chartas (Penn State) Divas Sanwal (Penn State)
The cooling-flow problem
THE EXPANSION ASYMMETRY AND AGE OF THE CASSIOPEIA A SUPERNOVA REMNANT XinZhou
Ji Yeon Seok Seoul National University. Contents  Part I: IR survey of the LMC SNRs 1. Introduction 2. Data & Approach 3. Result 4. Discussion: Origin.
ASTR112 The Galaxy Lecture 7 Prof. John Hearnshaw 11. The galactic nucleus and central bulge 11.1 Infrared observations (cont.) 11.2 Radio observations.
The infrared extinction law in various interstellar environments 1 Shu Wang 11, 30, 2012 Beijing Normal University mail.bnu.edu.cn.
Methanol maser and 3 mm line studies of EGOs Xi Chen (ShAO) 2009 East Asia VLBI Workshop, March , Seoul Simon Ellingsen (UTAS) Zhi-Qiang Shen.
The core of what I am going to talk about is shown
Sgr B2 Galactic Center Survey with Chandr Radio Arc 1 Sgr A East : Young SNR 2 The GC Hot Plasma : 10keV 3 Sgr B2, Radio Arc : Molecular Clouds ~2 x 1.
FC10; June 25, 2010Image credit: Gerhard Bachmayer Constraining the Flux of Low- Energy Cosmic Rays Accelerated by the Supernova Remnant IC 443 N. Indriolo.
Chapter 11 The Interstellar Medium
X-ray study of a nearby nuclear X-ray study of a nearby nuclear starburst and a nearby AGN starburst and a nearby AGN Roberto Soria (UCL) Mat Page, Kinwah.
Observational Evidence for Quasi-soft X-Ray Sources in Nearby Galaxies and the link to Intermediate-mass Black Holes Albert Kong and Rosanne Di Stefano.
C. Y. Hui & W. Becker X-Ray Studies of the Central Compact Objects in Puppis-A & RX J Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse.
Barrel or Bilateral-shaped SNRs Jiangtao Li May 6th 2009.
Multiple YSOs in the low-mass star-forming region IRAS CONTENT Introduction Previous work on IRAS Observations Results Discussion.
A Pulsar Wind Nebula Origin for Luminous TeV Source HESS J Joseph Gelfand (NYUAD / CCPP) Eric Gotthelf, Jules Halpern (Columbia University), Dean.
Bremen, Germany Patrick Slane (CfA) COSPAR 2010: E19 Fermi Studies of Collaborators: D. Castro S. Funk Y. Uchiyama J. D. Gelfand O. C. de Jager A. Lemiere.
Evolution of Newly Formed Dust in Population III Supernova Remnants and Its Impact on the Elemental Composition of Population II.5 Stars Takaya Nozawa.
「すざく」 による超新星残骸 RCW86 の観測 Suzaku Observations of Supernova Remnant RCW86 山口 弘悦 (理研) Hiroya Yamaguchi (RIKEN) ← Preliminary image of the Suzaku mapping observation.
Cornelia C. Lang University of Iowa collaborators:
Learning target: I can describe black holes Vocabulary: black hole, Agenda: Blackhole notes Blackhole math Stellar evolution activity Learning target DEC.
Dejan Urošević Department of Astronomy, Faculty of Mathematics, University of Belgrade Supernova remnants: evolution, statistics, spectra.
The impact of magnetic turbulence spectrum on particle acceleration in SNR IC443 I.Telezhinsky 1,2, A.Wilhelm 1,2, R.Brose 1,3, M.Pohl 1,2, B.Humensky.
Boston 2009 Patrick Slane (CfA) SNRs and PWNe in the Chandra Era Observations of Pulsar Bowshock Nebulae Collaborators: B. M. Gaensler T. Temim J. D. Gelfand.
SNRs and PWN in the Chandra Era – S. OrlandoBoston, USA – July 2009 S. Orlando 1, O. Petruk 2, F. Bocchino 1, M. Miceli 3,1 1 INAF - Osservatorio Astronomico.
Imaging Dust in Starburst Outflows with GALEX Charles Hoopes Tim Heckman Dave Strickland and the GALEX Science Team March 7, 2005 Galactic Flows: The Galaxy/IGM.
American Astronomical Society – Austin, TX (2008) Patrick Slane (CfA) In collaboration with: D. Helfand (Columbia) S. Reynolds (NC State) B. Gaensler (U.
Lecture 9: Wind-Blown Bubbles September 21, 2011.
The Galactic Center region The Galactic Center region K. Koyama and A. Senda (Kyoto-U) Y. Maeda and H. Murakami (ISAS / JAXA) Y. Maeda and H. Murakami.
SN 1987A: The Formation & Evolution of Dust in a Supernova Explosion
A large XMM-Newton project on SN 1006
A large XMM-Newton project on SN 1006
Q. Daniel Wang and Cornelia Lang (U. of Massachusetts)
Cornelia C. Lang University of Iowa collaborators:
Presentation transcript:

X-ray Properties of Five Galactic SNRs arXiv: Thomas G. Pannuti et al.

outlines background Sources & data results summary

background Reach et al. (2006): GLIMPSE survey (Galactic Legacy Infrared Mid-Plane Survey Extraordinaire) 10◦< |l| <65◦, |b|<1◦, bands: 3.6, 4.5, 5.8 and 8.0 μm 18 of 95 SNRs were detected in IR, coincided (at least partially) with known radio structures. many of the SNRs detected appear to be interacting with relatively dense gas. Evidence : 4.5 μm excess. Such an excess is likely produced by H2 and CO line, associated with molecular shocks. IRS spectroscopy observations revealed H2 emission from all of the SNRs in Reach et al. (2006), suggesting that each of these SNRs are interacting with molecular clouds Several molecular SNRs are detected (like W28, W44 and 3C 391) in the X- ray and all of them belong to the class of sources known as mixed- morphology SNRs (MM SNRs).

background J. Rho (1998): Mixed-Morphology Supernova Remnants

The group of SNRs with shell-like in the radio and centrally filled in the X-ray were termed mixed-morphology, besides shell-like, Crab-like, composite SNRs. Two characterastics: thermal X-ray dominant, emission arises primarily from swept-up ISM than ejecta. The temperature across each remnant is nearly uniform, and the density and pressure are constant or increase toward the remnant center. Strong infrared line emission or OH masers indicates most SNRs are interacting with molecular or HI clouds, suggests their formation requires a denser-than-average ISM. IC443

Sources & data The five SNRs are all detected in the infrared by the Spitzer GLIMPSE survey. 10◦< |l| <65◦, |b|<1◦, bands: 3.6, 4.5, 5.8 and 8.0 μm. (Reach et al.,2006) observationsASCA 99 XMM 05 ASCA 98ASCA 96 XMM 06 Chandra 06 XMM 06

Kes 17 Blue, green and red represent XMM-Newton X-ray (total band), Spitzer MIPS at 24μm and IRAC 4.5μm images

ASCA image of Kes 17

ASCA spectrum of Kes 17

XMM image and spectrum of Kes 17

G the red, green and blue correspond to emission detected at 8μm, 4.5 μm and 3.5μm CO map for the velocity v=39.7 km s^−1.

ASCA image and spectrum of G

G346.6−0.2 Spitzer MIPS at 24 μm, IRAC at 4.6 μm and radio.

ASCA image and spectrum of G346.6−0.2

XMM image and spectrum of CTB 37A G348.5−0.0

Chandra image. Red, green and blue colors correspond to soft ( keV), medium ( keV) and hard ( keV) emission. Chandra ACIS-I spectrum of CXOU J

Discussion--Implications for SNR evolution Simulations have shown that the center-filled thermal X-ray emission as observed in MM SNRs can be produced through anisotropic thermal conduction. SNRs expanding into denser environments tend to be smaller, making it easier for thermal conduction to dictate large changes in the temperatures of their expanding hot gas bubbles. (Tilley et al. 2006). MHD modeling of SNRs expanding through an inhomogeneous ISM also confirms that X-ray emission detected from MM SNRs can be reproduced when both thermal conduction and the reverse shock of the SNR are included in the modeling (Orlando et al. 2009). After the reverse shock has reached the center of the SNR, a maximum in the X-ray emission is seen toward the center of the SNR and the morphology is centrally brightened. Therefore, it is evident that thermal conduction plays a crucial role in producing SNRs of this class.

Summary Spectroscopic analysis of the X-ray properties of five SNRs (Kes 17, G311.5−0.3, G346.6−0.2, CTB 37A and G348.5−0.0) Four of the SNRs are X-ray detected and an upper limit is given on the X-ray luminosity of G348.5−0.0. First published detection of X-ray emission from G311.5−0.3.

The four X-ray detected SNRs all classified as MM SNRs. The X-ray emission from each SNR appears to be thermal in origin. Discussed the plasma conditions of the four X-ray detected SNRs and estimated such properties of the plasma as ne, t and M: these values range from cm−3, ×10^4 yr and Msun. These values are similar to those observed for other MM SNRs.

The results also include the first detailed spatially-resolved spectroscopic study of CTB 37A using Chandra as well as a spectroscopic study of the discrete X-ray source CXOU J −383601, which may be a neutron star associated with CTB 37A. The results help strengthen the link between MM SNRs and interactions between SNRs and molecular clouds: this may help to explain the origin of the center-filled thermal X-ray morphologies of these sources.

Thank you!